Above-ground carbon stock in a forest subjected to decadal frequent fires in western Tanzania

Loading...
Thumbnail Image
Date
2017-02-14
Journal Title
Journal ISSN
Volume Title
Publisher
International Network for Natural Sciences
Abstract
Gradual increase in atmospheric temperature due to elevated levels of greenhouse gases has become a global agenda. Of these gases, carbon dioxide is the most predominant accounting for more than half of the atmospheric warming. Conveniently, forests and woodlands are important sinks of carbon through sequestration which involves carbon dioxide capture and storage. Miombo woodlands are the most widespread savanna vegetation in the Sub-Saharan Africa, and like other vegetation they are likely to have a marked degree of carbon sequestration. However, these ecosystems are normally threatened by many disturbances, including outbreaks of uncontrolled and destructive fires. Yet, it has been reported that wildfires have both positive and negative influence on carbon sequestration in forests and woodlands. The aim of the present study was to determine tree carbon in Ilunde forest after consecutive exposure to frequent fires for 10 years. A fire suppressed forest of Kitwe was used as a control. Fire frequency of Ilunde forest was obtained from published Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery from the year 2001 to 2012. Tree carbon stock was estimated using biomass allometric models so far developed for miombo woodlands.The level of difference in carbon density between the two forests was determined using t-test. Tree carbon stock was significantly high in Kitwe forest than in Ilunde (P < 0.05). The effects of wildfires are variable depending on the nature of ecosystems and the existing circumstances. Since fire is crucial in miombo woodlands, then prescribed burning could be prioritized to sustain sinks of carbon.
Description
Keywords
Research Subject Categories::FORESTRY, AGRICULTURAL SCIENCES and LANDSCAPE PLANNING
Citation
Nyatwere D. Mganga, Herbert V. Lyaruu and Feetham Banyikwa. 2017. Above-ground carbon stock in a forest subjected to decadal frequent fires in western Tanzania. Journal of Biodiversity and Environmental Sciences. 10(2): 25-34