Analysis of Nox Reduction in Diesel Engines By Air Injection Using Stochastic Modelling

Loading...
Thumbnail Image
Date
2009-07
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Combustion phenomena have been found to be dependent on the turbulence of the air/gas and fuel in the cylinder. By enhancing turbulent mixing of fuel in the combustion chamber it is possible to improve combustion process. Based on the stochastic nature of turbulence of combustion processes as occurring in an IDI internal combustion engine, a model was developed based on these principles when compressed air was injected into the engine. The air injection was carried out in order to control the emission of NO x and soot simultaneously. In the present model, the mechanism of NO x formation is modeled using the thermal NO x principles while the soot emission is modeled using the global combustion model, which considered combustion as heat addition. Obtained results show close agreement with the experimental ones. The Zeldovich model used has been found model closely IDI engine processes also for the case of air injection as is case of a normal engine. This is due to the microscopic treatment of the mixing process, which involved over-simplification of HC combustion chemistry. It is shown that although there is no substantial temperature drop when compressed air was injected into the chamber, at microscopic scales, the mixing process that occur lead to local temperature drop. It is these local areas of temperature quenching that enhance the suppression of the formation of NO x . At high loads, however, particulate and HC are increased due to the enrichment of fuel in the local areas where the temperatures have substantially been reduced
Description
Keywords
ICE, Engine Emissions, Air Injection, Turbulence, Stochastic Modeling
Citation
Mkilaha, I.S.N. and John, G.R., Analysis of NO x reduction in diesel engines by air injection using stochastic. African Journal of Science and Technology, 1(4).