Department of Aquatic Sciences and Fisheries Technology

Department of Aquatic Sciences and Fisheries Technology

Browse

Recent Submissions

Now showing 1 - 3 of 3
  • Item
    Fish seed and feed value chains analysis and their critical factors for aquaculture development in Tanzania
    (Wiley, 2023-02-08) Amon Paul Shoko; Samwel Mchele Limbu; Eusebia Ernest Ulotu; Salome Daniel Shayo; Mathew Ogalo Silas; Sloans K. Chimatiro; Nazael Amos Madalla; Rashid Adam Tamatamah
    Seeds and feeds are among the most important inputs required for sustainable aquaculture industry development in any country worldwide. However, the value chain analysis of seeds and feeds in most developing countries including Tanzania has not been mapped, and the key actors are not identified and characterized. To address this knowledge gap, we mapped the fish seed and feed value chains in Morogoro, Dar es Salaam, Coast and Lindi regions in Tanzania, evaluated their performances, analyzed their contributions to aquaculture growth and finally assessed the critical factors impending aquaculture development before proposing appropriate strategies for upgrading. We found that the fish seed value chain comprised broodstock suppliers, seed producers, seed marketers, traders and fish farmers. Tilapia (Oreochromis sp.) and African sharptooth catfish (Clarias gariepinus) seeds produced were primarily sold to farmers at an advanced fry stage (1 to 5 g) at a price ranging from USD 0.09 to 0.13 and USD 0.22 to 0.27, respectively. The feed value chain consisted of suppliers, producers, importers, traders and fish farmers. The feeds produced were powdered, compressed and extruded pellets and granules sold at an average price of USD 2.50/kg. The seed and feed value chains in the four regions drive the aquaculture development and employ 137 and 109 people, respectively. The fish farming was mainly affected by insufficient seeds and feeds; inadequate extension services, inadequate technical skills in seed and feed production; limited farming equipment; insufficient capital and limited access to market. We propose increasing seed and feed production through collaborative research between researchers and the private sector, enhancing delivery of extension services to all fish farmers, providing fiscal incentives to hatchery and feed investors, organizing hatchery owners into associations, and undertaking marketing awareness campaign for aquaculture growth in the country for food, income and employment generation.
  • Item
    Adverse effects of chronic ammonia stress on juvenile oriental river prawn (Macrobrachium nipponense) and alteration of glucose and ammonia metabolism
    (Wiley, 2023-03) Shanshan Wei; Jin Zhang; Wanxin Chen; Anfu Shen; Dongsheng Zhou; Jinxian Zheng; Habib Thiam; Zhili Ding; Samwel Mchele Limbu; Youqin Kong
    Ammonia is one of the common stress factors in aquaculture. However, the effect of chronic ammonia exposure in juvenile oriental river prawn (Macrobrachium nipponense) is currently unexplored. This study explored the effects of chronic ammonia on juvenile healthy oriental river prawns. Fifty prawns (0.123 ± 0.003 g) were exposed to 0, 5, and 15 mg/L total ammonia nitrogen (TAN) in triplicates for 28 days. The effects of chronic ammonia challenge were evaluated on growth, antioxidant capacity, hepatopancreas and gill morphology, and glucose and ammonia metabolism. The results showed that, the chronic ammonia exposure reduced significantly survival rate and weight gain of prawns. The prawns exposed to 15 mg/L ammonia had induced oxidative stress. However, the prawn exposed to 15 mg/L ammonia had significantly lower aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and acid phosphatase activities in the serum. Furthermore, exposure of prawns to 15 mg/L ammonia increased the activities of hexokinase, pyruvate kinase, pyruvate and lactic acid content, and glutamine synthase activity. However, the prawns exposed to 15 mg/L ammonia, reduced succinic dehydrogenase, 6-phosphogluconic dehydrogenase, phosphoenolpyruvate carboxykinase, glutamate synthase, and glutamate dehydrogenase activities but increased ammonia content in serum. The exposure of ammonia deformed lumen, damaged basement membrane and decreased secretory cells in the hepatopancreas, disordered gill epithelial and pillar cells, and caused gill filament base vacuolation. Our study indicates that chronic ammonia stress impairs growth performance, tissue morphology, induces oxidative stress, and alters glucose and ammonia metabolism in juvenile oriental river prawns.
  • Item
    Dietary thiamine modulates carbohydrate metabolism, antioxidant status, and alleviates hypoxia stress in oriental river prawn Macrobrachium nipponense (de Haan)
    (Elsevier, 2022-12) Dongsheng Zhou; Chengli Wang; Jinxian Zheng; Jianhu Zhao; Shanshan Wei; Yunfeng Xiong; Samwel Mchele Limbu; Youqin Kong; Fang Cao; Zhili Ding
    Hypoxia is one of the challenges in prawns aquaculture. However, the role of thiamine, which is a coenzyme in carbohydrate metabolism with antioxidant properties, in reducing hypoxia in prawns aquaculture is currently unknown. We investigated the effects of thiamine on antioxidant status, carbohydrate metabolism and acute hypoxia in oriental river prawn, Macrobrachium nipponense. One thousand eight hundred prawns (0.123 ± 0.003 g) were fed five diets (60 prawns each tank, six replicates per diet) supplemented with graded thiamine levels (5.69, 70.70, 133.67, 268.33 and 532.00 mg/kg dry mater) for eight weeks and then exposed to hypoxia stress for 12 h followed by reoxyegnation for 12 h. The results showed that, under normoxia, prawns fed the 133.67 or 268.33 mg/kg thiamine diet had significantly lower glucose 6-phosphatedehydrogenase, succinate dehydrogenase and phosphoenolpyruvate carboxykinase activities than those fed the other diets. Moreover, total antioxidant capacity (T-AOC) increased significantly when prawns were fed the 133.67 mg/kg thiamine diet. Superoxide dismutase (SOD) activity and malonaldehyde (MDA) content also increased significantly when prawns were fed the 268.33 or 532.00 mg/kg thiamine diet under hypoxia. And the significantly increased SOD activity and MDA level also observed in prawns fed 532.00 mg/kg thiamine under reoxygenation. Under normoxia, prawns fed the 70.70 or 133.67 mg/kg thiamine diet decreased the mRNA expressions of AMP-activated protein kinase-alpha (AMPK-α), pyruvate dehydrogenase-E1-α subunit (PDH-E1-α) and hypoxia-inducible factor-1s (HIF-1α, HIF-1β), but increased the mRNA expressions of phosphofructokinase (PFK) significantly. After 12 h of hypoxia, the energy metabolism related genes (AMPK-β, AMPK-γ, PFK, PDH-E1-α), hypoxia-inducible factor related genes (HIF-1α, HIF-1β) and thiamine transporter gene (SLC19A2) were up-regulated significantly in prawns fed the 133.67 or 268.33 mg/kg thiamine diets. After 12 h of reoxygenation, prawns fed the 133.67 or 268.33 mg/kg diet significantly decreased the SOD activity, MDA level and SLC19A2 mRNA expression compared with other diets. The optimum thiamine was 161.20 mg/kg for minimum MDA content and 143.17 mg/kg for maximum T-AOC activity based on cubic regression analysis. In summary, supplementing 143.17 to 161.20 mg/kg thiamine in the diets for M. nipponense improves the antioxidant capacity under normoxia and reduces the oxidative damage under hypoxia stress.