Genetic Algorithm-Enhanced Retrieval Process for Multimedia Data

dc.contributor.authorCheruiyot, Wilson
dc.contributor.authorTan, Guan Z.
dc.contributor.authorMushi, Joseph C.
dc.contributor.authorMusau, Felix
dc.date.accessioned2016-07-25T17:51:34Z
dc.date.available2016-07-25T17:51:34Z
dc.date.issued2011
dc.description.abstractThe explosive growth of digital media content from various domains has given rise to the need for efficient techniques for retrieval of relevant information is getting more and more attention, especially in the large-scale Multimedia Digital Database (MDD) applications. It is for this reason that there has been an increased interest in the query reformulation for use in Multimedia Information Retrieval (MIR) using a combination of various techniques. In this paper, we propose a retrieval method that is formalized as an optimized similarity search process that combines Singular Value Decomposition (SVD), Query Quality Refinement (QQR) using Histogram Equalization and Genetic Algorithm (GA) enhancement. Experimental results show that the approach significantly narrows the search process by retrieving similar images satisfying the needs of the user.en_US
dc.identifier.citationWilson, C., Tan, G.Z., Mushi, J.C. and Musau, F., 2011. Genetic algorithm-enhanced retrieval process for multimedia data. IJACT: International Journal of Advancements in Computing Technology, 3(3), pp.153-167.en_US
dc.identifier.doi10.4156/ijact.vol3.issue3.15
dc.identifier.urihttp://hdl.handle.net/20.500.11810/3430
dc.language.isoenen_US
dc.subjectMultimedia information retrievalen_US
dc.subjectSimilarity searchen_US
dc.subjectGenetic algorithmsen_US
dc.subjectSingular value decompositionen_US
dc.subjectHistogram equalizationen_US
dc.subjectQuery quality refinementen_US
dc.titleGenetic Algorithm-Enhanced Retrieval Process for Multimedia Dataen_US
dc.typeJournal Article, Peer Revieweden_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Genetic Algorithm-Enhanced Retrieval Process for Multimedia Data.pdf
Size:
7.09 MB
Format:
Adobe Portable Document Format
Description:
Full text
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: