FIXED POINTS FOR HYBRID MAPPINGS SATISFYING AN IMPLICIT RELATION IN PARTIAL METRIC SPACES
dc.contributor.author | Kumar, Santosh | |
dc.contributor.author | Rugumisa, Terentius | |
dc.date.accessioned | 2019-04-05T11:45:13Z | |
dc.date.available | 2019-04-05T11:45:13Z | |
dc.date.issued | 2018-12-01 | |
dc.description.abstract | In this paper, we prove a fi xed point theorem for hybrid mappings in partial metric spaces. The theorem contains an altering distance function and involves an implicit relation satisfying the (E.A) - property. In doing so, we generalize a theorem by Popa and Patriciu. | en_US |
dc.description.sponsorship | Free | en_US |
dc.identifier.issn | 2455-7463 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11810/5167 | |
dc.publisher | Jnanabha-Vijñāna Parishad of India | en_US |
dc.subject | Partial metric space, hybrid mappings, implicit relation, Hausdorff partial metric, (E.A) property. | en_US |
dc.title | FIXED POINTS FOR HYBRID MAPPINGS SATISFYING AN IMPLICIT RELATION IN PARTIAL METRIC SPACES | en_US |
dc.type | Journal Article, Peer Reviewed | en_US |