FIXED POINTS FOR HYBRID MAPPINGS SATISFYING AN IMPLICIT RELATION IN PARTIAL METRIC SPACES

dc.contributor.authorKumar, Santosh
dc.contributor.authorRugumisa, Terentius
dc.date.accessioned2019-04-05T11:45:13Z
dc.date.available2019-04-05T11:45:13Z
dc.date.issued2018-12-01
dc.description.abstractIn this paper, we prove a fi xed point theorem for hybrid mappings in partial metric spaces. The theorem contains an altering distance function and involves an implicit relation satisfying the (E.A) - property. In doing so, we generalize a theorem by Popa and Patriciu.en_US
dc.description.sponsorshipFreeen_US
dc.identifier.issn2455-7463
dc.identifier.urihttp://hdl.handle.net/20.500.11810/5167
dc.publisherJnanabha-Vijñāna Parishad of Indiaen_US
dc.subjectPartial metric space, hybrid mappings, implicit relation, Hausdorff partial metric, (E.A) property.en_US
dc.titleFIXED POINTS FOR HYBRID MAPPINGS SATISFYING AN IMPLICIT RELATION IN PARTIAL METRIC SPACESen_US
dc.typeJournal Article, Peer Revieweden_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Paper-38.pdf
Size:
259.43 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: