Microstructure and Materials Characterization of Sol-Gel Synthesized ZrO2 Systems

dc.contributor.authorPark, Sungsoo
dc.contributor.authorShao, Godlisten N.
dc.date.accessioned2019-07-15T17:52:32Z
dc.date.available2019-07-15T17:52:32Z
dc.date.issued2019
dc.descriptionThe roles of pH and thermal treatment on the microstructures of sol-gel synthesized mesoporous ZrO2 systems have been investigated. In order to control the crystal structure and particle size of the final products, the pH values of the reaction mixtures were controlled between 5 and 12 followed by calcination at temperatures ranging from 450 to 1000 °C. The microstructures of the zirconia systems were then examined by XRD, TEM, TGA, UV-visible DRS and nitrogen physisorption study analyses. It was found that pH values and calcination temperatures have significant influence on the crystallization temperature, phase transformation and particle size of the ZrO2 systems. Pure tetragonal and monoclinic ZrO2 crystals or a mixture of tetragonal and monoclinic ZrO2 crystals with controlled particle size could readily be yielded by maintaining the pH values and the calcination temperatures. This study therefore elucidates a facile approach to yielding sol-gel synthesized metal oxide nanoparticles with controlled phase and particle size.en_US
dc.description.abstractThe roles of pH and thermal treatment on the microstructures of sol-gel synthesized mesoporous ZrO2 systems have been investigated. In order to control the crystal structure and particle size of the final products, the pH values of the reaction mixtures were controlled between 5 and 12 followed by calcination at temperatures ranging from 450 to 1000 °C. The microstructures of the zirconia systems were then examined by XRD, TEM, TGA, UV-visible DRS and nitrogen physisorption study analyses. It was found that pH values and calcination temperatures have significant influence on the crystallization temperature, phase transformation and particle size of the ZrO2 systems. Pure tetragonal and monoclinic ZrO2 crystals or a mixture of tetragonal and monoclinic ZrO2 crystals with controlled particle size could readily be yielded by maintaining the pH values and the calcination temperatures. This study therefore elucidates a facile approach to yielding sol-gel synthesized metal oxide nanoparticles with controlled phase and particle size.en_US
dc.identifier.issn0856-1761
dc.identifier.urihttp://hdl.handle.net/20.500.11810/5279
dc.language.isoenen_US
dc.publisherTanzania Journal of Scienceen_US
dc.titleMicrostructure and Materials Characterization of Sol-Gel Synthesized ZrO2 Systemsen_US
dc.typeJournal Articleen_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Godlisten TSJ.doc
Size:
22.5 KB
Format:
Microsoft Word
Description:
The roles of pH and thermal treatment on the microstructures of sol-gel synthesized mesoporous ZrO2 systems have been investigated. In order to control the crystal structure and particle size of the final products, the pH values of the reaction mixtures were controlled between 5 and 12 followed by calcination at temperatures ranging from 450 to 1000 °C. The microstructures of the zirconia systems were then examined by XRD, TEM, TGA, UV-visible DRS and nitrogen physisorption study analyses. It was found that pH values and calcination temperatures have significant influence on the crystallization temperature, phase transformation and particle size of the ZrO2 systems. Pure tetragonal and monoclinic ZrO2 crystals or a mixture of tetragonal and monoclinic ZrO2 crystals with controlled particle size could readily be yielded by maintaining the pH values and the calcination temperatures. This study therefore elucidates a facile approach to yielding sol-gel synthesized metal oxide nanoparticles with controlled phase and particle size.The roles of pH and thermal treatment on the microstructures of sol-gel synthesized mesoporous ZrO2 systems have been investigated. In order to control the crystal structure and particle size of the final products, the pH values of the reaction mixtures were controlled between 5 and 12 followed by calcination at temperatures ranging from 450 to 1000 °C. The microstructures of the zirconia systems were then examined by XRD, TEM, TGA, UV-visible DRS and nitrogen physisorption study analyses. It was found that pH values and calcination temperatures have significant influence on the crystallization temperature, phase transformation and particle size of the ZrO2 systems. Pure tetragonal and monoclinic ZrO2 crystals or a mixture of tetragonal and monoclinic ZrO2 crystals with controlled particle size could readily be yielded by maintaining the pH values and the calcination temperatures. This study therefore elucidates a facile approach to yielding sol-gel synthesized metal oxide nanoparticles with controlled phase and particle size.
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: