Browsing by Author "Sheng-Xiang, Sun"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Chronic exposure to low environmental concentrations and legal aquaculture doses of antibiotics cause systemic adverse effects in Nile tilapia (Oreochromis niloticus) and provoke differential human health risk.(Elsevier, 2018-03-28) Samwel Mchele Limbu; Li, Zhou; Sheng-Xiang, Sun; Mei-Ling, ZhangBackground Antibiotics used globally to treat human and animal diseases exist ubiquitously in the environment at low doses because of misuse, overdose and poor absorption after ingestion, coupled with their high-water solubility and degradation resistance. However, the systemic chronic effects of exposure to low environmental concentrations of antibiotics (LECAs) and legal aquaculture doses of antibiotics (LADAs) in fish and their human health risk are currently unknown. Objective To investigate the in vivo chronic effects of exposure to LECAs and LADAs using oxytetracycline (OTC) and sulfamethoxazole (SMZ) in Nile tilapia (Oreochromis niloticus) and their human health risk. Methods Twenty O. niloticus weighing 27.73 ± 0.81 g were exposed to water containing LECAs (OTC at 420 ng/L and SMZ at 260 ng/L) and diets supplemented with LADAs (OTC 80 mg/kg/day and SMZ 100 mg/kg/day) for twelve weeks. General physiological functions, metabolic activities, intestinal and hepatic health were systemically evaluated. The possible human health risks of the consumption of the experimental Nile tilapia fillets in adults and children were assessed by using risk quotient. Results After exposure, we observed retarded growth performance accompanied by reduced nutrients digestibility, feed efficiency, organ indices, and lipid body composition in treated fish. Antibiotics distorted intestinal morphological features subsequently induced microbiota dysbiosis and suppressed intestinal tight junction proteins. Exposure of fish to LECAs and LADAs induced oxidative stress, suppressed innate immunity, stimulated inflammatory and detoxification responses, concomitantly inhibited antioxidant capacity and caused lipid peroxidation in intestine and liver organs. Both LECAs and LADAs enhanced gluconeogenesis, inhibited lipogenesis and fatty acid beta oxidation in intestine and liver organs. The exposure of fish to LECAs and LADAs induced anaerobic glycolytic pathway and affected intestinal fat catabolism in intestine while halted aerobic glycolysis, increased hepatic fat catabolism, and induced DNA damage in liver. The hazard risk quotient in children for fish treated with OTCD was >1 indicating human health risk. Conclusion Overall, both LECAs and LADAs impair general physiological functions, nutritional metabolism, and compromise fish immune system. Consumption of fish fed with legal OTC provokes health risk in children. Global stringent prohibition policy for use of antibiotics in aquaculture production and strategies to limit their release into the environment are urgently required to protect human health.Item Tracking pollutants in dietary fish oil: from ocean to table.(Elsevier, 2018-05-16) Sheng-Xiang, Sun; Xue-Ming, Hua; Yun-Yun, Deng; Yun-Ni, Zhang; Jia-Min, Li; Zhao, Wu; Samwel Mchele Limbu; Da-Sheng, Lu; Hao-Wen, Yin; Guo-Quan, Wang; Rune, Waagbø; Frøyland, Livar; Mei-Ling, Zhang; Zhen-Yu, DuDietary fish oil used in aquafeed transfers marine pollutants to farmed fish. However, the entire transfer route of marine pollutants in dietary fish oil from ocean to table fish has not been tracked quantitatively. To track the entire transfer route of marine pollutants from wild fish to farmed fish through dietary fish oil and evaluate the related human health risks, we obtained crude and refined fish oils originating from the same batch of wild ocean anchovy and prepared fish oil-containing purified aquafeeds to feed omnivorous lean Nile tilapia and carnivorous fatty yellow catfish for eight weeks. The potential human health risk of consumption of these fish was evaluated. Marine persistent organic pollutants (POPs) were concentrated in fish oil, but were largely removed by the refining process, particularly dioxins and polychlorinated biphenyls (PCBs). The differences in the POP concentrations between crude and refined fish oils were retained in the fillets of the farmed fish. Fillets fat content and fish growth were positively and negatively correlated to the final POPs deposition in fillets, respectively. The retention rates of marine POPs in the final fillets through fish oil-contained aquafeeds were 1.3%–5.2%, and were correlated with the POPs concentrations in feeds and fillets, feed utilization and carcass ratios. The dietary crude fish oil-contained aquafeeds are a higher hazard ratio to consumers. Prohibiting the use of crude fish oil in aquafeed and improving growth and feed efficiency in farmed fish are promising strategies to reduce health risks originating from marine POPs.