Browsing by Author "Nunome, Yoko"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Contribution of Volatile Interactions during Co-gasification of Biomass with Coal(Life science Global, 2013) Kihedu, Joseph H.; Yoshiie, Ryo; Nunome, Yoko; Naruse, IchiroThermo-gravimetric behavior during steam co-gasification of Japanese cedar and coal was investigated. The difference between co-gasification behavior and the average gasification behavior of cedar and coal indicates two synergetic peaks. The first peak occurred between 300 °C and 550 °C while the second peak was observed above 800 °C. The first peak coincides with volatile release and therefore associated with volatile interactions while the second peak is linked with catalytic effect of alkali and alkaline earth metal (AAEM). Acid washed cellulose and Na rich lignin chemicals were used as artificial biomass components. In reference to Japanese cedar, mixture of cellulose and lignin i.e. simulated biomass, was also investigated. Co-gasification of cellulose with coal and co-gasification of lignin with coal, demonstrates contribution of volatile interactions and AAEM catalysis respectively. Morphology of partially gasified blends, shows hastened pore development and physical cracking on coal particles. Brunauer−Emmett−Teller (BET) surface area of the charred blend was lower than the average surface area for charred biomass and coal.Item Conversion Synergies during Steam Co-Gasification of Ligno-Cellulosic Simulated Biomass with Coal(Scientific Research, 2012-12) Kihedu, Joseph H.; Yoshiie, Ryo; Nunome, Yoko; Ueki, Yasuaki; Naruse, IchiroLignin and cellulose chemicals were used as artificial biomass components to make-up a simulated biomass. Alkali and Alkaline Earth Metal (AAEM) as well as volatile matter contents in these chemicals were much different from each other. Co-gasification of coal with simulated biomass shows improved conversion characteristics in comparison to the average calculated from separate conversion of coal and simulated biomass. Two conversion synergetic peaks were observed whereby the first peak occurred around 400℃ while the second one occurred above 800℃. Although co-gasification of coal with lignin that has high AAEM content also shows two synergy peaks, the one at higher temperature is dominant. Co-gasification of coal with cellulose shows only a single synergy peak around 400℃ indicating that synergy at low temperature is related with interaction of volatiles. Investigation of morphology changes during gasification of lignin and coal, suggests that their low reactivity is associated with their solid shape maintained even at high temperature.Item Counter-flow air gasification of woody biomass pellets in the auto-thermal packed bed reactor(Sciencedirect, 2014-01) Kihedu, Joseph H.; Yoshiie, Ryo; Nunome, Yoko; Ueki, Yasuaki; Naruse, IchiroCounter-flow packed bed gasification was carried out featuring a combination of downdraft and updraft operation modes. A column reactor of inside diameter 102 mm and 1000 mm height was used. Downdraft and updraft air supply were varied while the total air supply was maintained constant. Counter-flow gasification with downdraft air supply at 12 L/min and updraft air at 4 L/min offered optimal conditions, producing syngas with 4.28 MJ/m3 N LHV and 5.84 g/m3 N tar content. Under similar operating conditions, cold gas efficiency was about 77% while carbon conversion reached 88%. Increasing the updraft air flow resulted in reduced tar generation and increased carbon conversion, however, the syngas LHV and cold gas efficiency were affected adversely.