Browsing by Author "Lyantagaye, Slyvester, L"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Farmers’ pesticide usage practices in the malaria endemic region of North-Western Tanzania: implications to the control of malaria vectors(BioMed Central (BMC), 2019-11) Philbert, Anitha; Lyantagaye, Slyvester, L; Nkwengulila, GambaBackground: Pesticides remain the mainstay for the control of agricultural pests and disease vectors. However, their indiscriminate use in agriculture has led to development of resistance to both crop pests and disease vectors. This threatens to undermine the success gained through the implementation of chemical based vector control programs. We investigated the practices of farmers with regard to pesticide usage in the vegetable growing areas and their impact on susceptibility status of An. gambiae s.l. Methods: A stratified multistage sampling technique using the administrative structure of the Tanzanian districts as sampling frame was used. Wards, villages and then participants with farms where pesticides are applied were purposively recruited at different stages of the process, 100 participants were enrolled in the study. The same villages were used for mosquito larvae sampling from the farms and the surveys were complimented by the entomological study. Larvae were reared in the insectary and the emerging 2–3 days old female adults of Anopheles gambiae s.l were subjected to susceptibility test. Results: Forty eight pesticides of different formulations were used for control of crop and Livestock pests. Pyrethroids were the mostly used class of pesticides (50%) while organophosphates and carbamates were of secondary importance. Over 80% of all farmers applied pesticides in mixed form. Susceptibility test results confirmed high phenotypic resistance among An. gambiae populations against DDT and the pyrethroids (Permethrin-0.75%, Cyfluthrin-0.15%, Deltametrin-0.05% and Lambdacyhalothrin-0.05%) with mortality rates 54, 61, 76 and 71%, respectively. Molecular analysis showed An. arabiensis as a dominant species (86%) while An. gambiae s.s constituted only 6%. The kdr genes were not detected in all of the specimens that survived insecticide exposures. Conclusion: The study found out that there is a common use of pyrethroids in farms, Livestocks as well as in public health. The study also reports high phenotypic resistance among An. gambiae s.l against most of the pyrethroids tested. The preponderance of pyrethroids in agriculture is of public health concern because this is the class of insecticides widely used in vector control programs and this calls for combined integrated pest and vector management (IPVM).Item Pyrethroids and DDT tolerance of Anopheles gambiae s.l. from Sengerema District, an area of intensive pesticide usage in north-western Tanzania(Willey online Library, 2017-04) Philbert, Anitha; Lyantagaye, Slyvester, L; Pradel, Gabriela; Ngwa, Julious, C; Nkwengulila, Gambaobjective To assess the susceptibility status of malaria vectors to pyrethroids and dichlorodiphenyltrichloroethane (DDT), characterise the mechanisms underlying resistance and evaluate the role of agro-chemical use in resistance selection among malaria vectors in Sengerema agro-ecosystem zone, Tanzania. methods Mosquito larvae were collected from farms and reared to obtain adults. The susceptibility status of An. gambiae s.l. was assessed using WHO bioassay tests to permethrin, deltamethrin, lambdacyhalothrin, etofenprox, cyfluthrin and DDT. Resistant specimens were screened for knockdown resistance gene (kdr), followed by sequencing both Western and Eastern African variants. A gas chromatography–mass spectrophotometer (GC-MS) was used to determine pesticide residues in soil and sediments from mosquitoes’ breeding habitats. results Anopheles gambiae s.l. was resistant to all the insecticides tested. The population of Anopheles gambiae s.l was composed of Anopheles arabiensis by 91%. The East African kdr (L1014S) allele was found in 13 of 305 specimens that survived insecticide exposure, with an allele frequency from 0.9% to 50%. DDTs residues were found in soils at a concentration up to 9.90 ng/g (dry weight). conclusion The observed high resistance levels of An. gambiae s.l., the detection of kdr mutations and pesticide residues in mosquito breeding habitats demonstrate vector resistance mediated by pesticide usage. An integrated intervention through collaboration of agricultural, livestock and vector control units is vital