Browsing by Author "Kuria, David N."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Seasonal Vegetation Changes in the Malinda Wetland Using Bi-Temporal, Multi-Sensor, Very High Resolution Remote Sensing Data Sets(Scientific Research, 2014) Kuria, David N.; Menz, Gunter; Misana, Salome B.; Mwita, Emiliana; Thamm, Hans P.; Alvarez, Miguel; Mogha, Neema; Becker, M.; Oyieke, HelidaSmall wetlands in East Africa have grown in prominence driven by the unreliable and diminished rains and the increasing population pressure. Due to their size (less than 500 Ha), these wetlands have not been studied extensively using satellite remote sensing approaches. High spatial resolu- tion remote sensing approaches overcome this limitation allowing detailed inventorying and re- search on such small wetlands. For understanding the seasonal variations in land cover within the Malinda Wetland in Tanzania (350 Ha), two periods were considered, May 2012 coinciding with the wet period (rainy season) and August 2012 coinciding with a fairly rain depressed period (substantially dry but generally cooler season). The wetland was studied using very high spatial resolution orthophotos derived from Unmanned Aerial Vehicle (UAV) photography fused with TerraSAR-X Spotlight mode dual polarized radar data. Using these fused datasets, five main classes were identified that were used to firstly delineate seasonal changes in land use activities and secondly used in determining phenology changes. Combining fuzzy maximum likelihood clas- sification, knowledge classifier and Change Vector Analysis (CVA), land cover classification was undertaken for both seasons. From the results, manifold anthropogenic activities are taking place between the seasons as evidenced by the high conversion rates (63.01 Ha). The phenological change was also highest within the human influence class due to the growing process of cropped land (26.60 Ha). Much of the changes in both cover and phenology are occurring in the mid upper portion of the wetland, attributed to the presence of springs in this portion of the wetland along the banks of River Mkomazi. There is thus seasonality in the observed anthropogenic influence between the wetland and its periphery.Item Seasonal Vegetation Changes in the Malinda Wetland Using Bi-Temporal, Multi-Sensor, Very High Resolution Remote Sensing Data Sets(2014-03) Kuria, David N.; Menz, Gunter; Misana, Salome; Mwita, Emiliana; Thamm, Hans P.; Alvarez, Miguel; Mogha, Neema; Becker, M.; Oyieke, HelidaSmall wetlands in East Africa have grown in prominence driven by the unreliable and diminished rains and the increasing population pressure. Due to their size (less than 500 Ha), these wetlands have not been studied extensively using satellite remote sensing approaches. High spatial resolu-tion remote sensing approaches overcome this limitation allowing detailed inventorying and re-search on such small wetlands. For understanding the seasonal variations in land cover within the Malinda Wetland in Tanzania (350 Ha), two periods were considered, May 2012 coinciding with the wet period (rainy season) and August 2012 coinciding with a fairly rain depressed period (substantially dry but generally cooler season). The wetland was studied using very high spatial resolution orthophotos derived from Unmanned Aerial Vehicle (UAV) photography fused with TerraSAR-X Spotlight mode dual polarized radar data. Using these fused datasets, five main classes were identified that were used to firstly delineate seasonal changes in land use activities and secondly used in determining phenology changes. Combining fuzzy maximum likelihood classification, knowledge classifier and Change Vector Analysis (CVA), land cover classification was undertaken for both seasons. From the results, manifold anthropogenic activities are taking place between the seasons as evidenced by the high conversion rates (63.01 Ha). The phenological change was also highest within the human influence class due to the growing process of cropped land (26.60 Ha). Much of the changes in both cover and phenology are occurring in the mid upper portion of the wetland, attributed to the presence of springs in this portion of the wetland along the banks of River Mkomazi. There is thus seasonality in the observed anthropogenic influence between the wetland and its periphery.Item The Use of UAS for Assessing Agricultural Systems in AN Wetland in Tanzania in the Dry- and Wet-Season for Sustainable Agriculture and Providing Ground Truth for Terra-SAR X Data(2013) Thamm, Hans P.; Menz, Gunter; Becker, M.; Kuria, David N.; Misana, Salome B.; Kohn, D.The paper describes the assessment of the vegetation and the land use systems of the Malinda Wetland in the Usambara Mountains in Tanzania with the parachute UAS (unmanned aerial system) SUSI 62. The area of investigation was around 8 km2. In two campaigns, one in the wet season and one in the dry season, approximately 2600 aerial photos of the wetland were taken using the parachute UAS SUSI 62; of these images, ortho-photos with a spatial resolution of 20 cm × 20 cm, were computed with an advanced block bundle approach. The block bundles were geo-referenced using control points taken with differential GPS. As well a digital surface model (DSM) of the wetland was created out of the UAS photos. Using the ortho-photos it is possible to assess the different land use systems; the differences in the phenology of the vegetation between wet and dry season can be investigated. In addition, the regionalisation of bio mass samples on smaller test plots was possible. The ortho-photos and the DSM derived from the UAS proved to be a valuable ground truth for the interpretation of Terra-SAR X images. The campaigns demonstrated that SUSI 62 was a suitable, robust tool to obtain the valuable information under harsh conditions.