Browsing by Author "Jia-Min, Li"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Inhibited carnitine synthesis causes systemic alteration of nutrient metabolism in zebrafish.(2018-05-09) Jia-Min, Li; Ling-Yu, Li; Xuan, Qin; Pascal, Degrace; Laurent Demizieux, Demizieux; Samwel Mchele Limbu; Xin, Wang; Mei-Ling, Zhang; Dong-Liang, Li; Zhen-Yu Du, DuImpaired mitochondrial fatty acid β-oxidation has been correlated with many metabolic syndromes, and the metabolic characteristics of the mammalian models of mitochondrial dysfunction have also been intensively studied. However, the effects of the impaired mitochondrial fatty acid β-oxidation on systemic metabolism in teleost have never been investigated. In the present study, we established a low-carnitine zebrafish model by feeding fish with mildronate as a specific carnitine synthesis inhibitor [0.05% body weight (BW)/d] for 7 weeks, and the systemically changed nutrient metabolism, including carnitine and triglyceride (TG) concentrations, fatty acid (FA) β-oxidation capability, and other molecular and biochemical assays of lipid, glucose, and protein metabolism, were measured. The results indicated that mildronate markedly decreased hepatic carnitine concentrations while it had no effect in muscle. Liver TG concentrations increased by more than 50% in mildronate-treated fish. Mildronate decreased the efficiency of liver mitochondrial β-oxidation, increased the hepatic mRNA expression of genes related to FA β-oxidation and lipolysis, and decreased the expression of lipogenesis genes. Mildronate decreased whole body glycogen content, increased glucose metabolism rate, and upregulated the expression of glucose uptake and glycolysis genes. Mildronate also increased whole body protein content and hepatic mRNA expression of mechanistic target of rapamycin (mtor), and decreased the expression of a protein catabolism-related gene. Liver, rather than muscle, was the primary organ targeted by mildronate. In short, mildronate-induced hepatic inhibited carnitine synthesis in zebrafish caused decreased mitochondrial FA β-oxidation efficiency, greater lipid accumulation, and altered glucose and protein metabolism. This reveals the key roles of mitochondrial fatty acid β-oxidation in nutrient metabolism in fish, and this low-carnitine zebrafish model could also be used as a novel fish model for future metabolism studies.Item Inhibited fatty acid β-oxidation impairs stress resistance ability in Nile tilapia (Oreochromis niloticus)., 68: 500-508.(Elsevier, 2017-07-31) Han, Pan; Ling-Yu, Li; Jia-Min, Li; Wei-Li, Wang; Samwel Mchele Limbu; Pascal, Degrace; Dong-Liang, Li; Zhen-Yu, DuEnergy metabolism plays important roles in stress resistance and immunity in mammals, however, such functions have not been established in fish. In the present study, Nile tilapia (Oreochromis niloticus) was fed with mildronate, an inhibitor of mitochondrial fatty acid (FA) β-oxidation, for six weeks subsequently challenged with Aeromonas hydrophila and ammonia nitrogen exposure. Mildronate treatment reduced significantly l-carnitine concentration and mitochondrial FA β-oxidation efficiency, while it increased lipid accumulation in liver. The fish with inhibited hepatic FA catabolism had lower survival rate when exposed to Aeromonas hydrophila and ammonia nitrogen. Moreover, fish fed mildronate supplemented diet had lower immune enzymes activities and anti-inflammatory cytokine genes expressions, but had higher pro-inflammatory cytokine genes expressions. However, the oxidative stress-related biochemical indexes were not significantly affected by mildronate treatment. Taken together, inhibited mitochondrial FA β-oxidation impaired stress resistance ability in Nile tilapia mainly through inhibiting immune functions and triggering inflammation. This is the first study showing the regulatory effects of lipid catabolism on stress resistance and immune functions in fish.Item Tracking pollutants in dietary fish oil: from ocean to table.(Elsevier, 2018-05-16) Sheng-Xiang, Sun; Xue-Ming, Hua; Yun-Yun, Deng; Yun-Ni, Zhang; Jia-Min, Li; Zhao, Wu; Samwel Mchele Limbu; Da-Sheng, Lu; Hao-Wen, Yin; Guo-Quan, Wang; Rune, Waagbø; Frøyland, Livar; Mei-Ling, Zhang; Zhen-Yu, DuDietary fish oil used in aquafeed transfers marine pollutants to farmed fish. However, the entire transfer route of marine pollutants in dietary fish oil from ocean to table fish has not been tracked quantitatively. To track the entire transfer route of marine pollutants from wild fish to farmed fish through dietary fish oil and evaluate the related human health risks, we obtained crude and refined fish oils originating from the same batch of wild ocean anchovy and prepared fish oil-containing purified aquafeeds to feed omnivorous lean Nile tilapia and carnivorous fatty yellow catfish for eight weeks. The potential human health risk of consumption of these fish was evaluated. Marine persistent organic pollutants (POPs) were concentrated in fish oil, but were largely removed by the refining process, particularly dioxins and polychlorinated biphenyls (PCBs). The differences in the POP concentrations between crude and refined fish oils were retained in the fillets of the farmed fish. Fillets fat content and fish growth were positively and negatively correlated to the final POPs deposition in fillets, respectively. The retention rates of marine POPs in the final fillets through fish oil-contained aquafeeds were 1.3%–5.2%, and were correlated with the POPs concentrations in feeds and fillets, feed utilization and carcass ratios. The dietary crude fish oil-contained aquafeeds are a higher hazard ratio to consumers. Prohibiting the use of crude fish oil in aquafeed and improving growth and feed efficiency in farmed fish are promising strategies to reduce health risks originating from marine POPs.