Browsing by Author "Jande, Yusufu Abeid Chande"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Biogas-slurry derived mesoporous carbon for supercapacitor applications(Elsevier, 2017) Enock, Talam Kibona; King’ondu, Cecil K.; Pogrebnoi, Alexander; Jande, Yusufu Abeid ChandeThis study reports on the transformation of biogas slurry into mesoporous carbon for supercapacitor electrodes. Pore structures have been modified by altering activation time, temperature and KOH/carbon mass ratio. The mesoporous carbons are successively developed as evidenced by type IV isotherms obtained in nitrogen sorption studies. BET, micropore and mesopore surface area of 515, 350, and 165 m2 g−1, respectively as well as a narrow pore width distribution of 3–4.5 nm are obtained. X-ray photoelectron results have confirmed the presence of functional groups of oxygen and nitrogen in the samples which facilitates the pseudocapacitance. The electrochemical measurements in 6 M KOH using a three electrode cell with Ag/AgCl as reference electrode and platinum as counter electrode has been performed. The materials activated at 700 °C, 3:1 KOH to carbon mass ratio, and for 120 min exhibit high specific capacitance of 289 F g−1 at a scan rate of 5 mV s−1. Shortening activation time to 30 and 60 min reduces specific capacitance to 163 and 182 F g−1, in that order. Additionally, at 3:1 KOH to carbon mass ratio and 60 min activation time, specific capacitances of 170 and 210 F g−1 at 600 and 800 °C, respectively are obtained. Moreover, specific capacitance increases with increasing the KOH to carbon mass ratio from 148 F g−1 for 1:1–163 F g−1 for 3:1 at 700 °C. Electrochemical impedance spectroscopy studies demonstrate that material has high conductivity. In addition; capacity retention of 96% after 20,000 cycles is shown at scan rate of 30 mV s−1. The study shows that high performance electrodes can be designed from biogas slurry derived porous carbon.Item Fish bladder-based activated carbon/Co3O4/TiO2 composite electrodes for supercapacitors(Elsevier, 2019) Sirengo, Keith; Jande, Yusufu Abeid Chande; Kibona, Talam Enock; Hilonga, Askwar; Muiva, Cosmas; King'ondu, Cecil KCobalt oxide/titanium dioxide/activated carbon (Co3O4/TiO2/Ac) composite was synthesized using simple sol-gel method before annealing at 300 °C. Fish bladder derived porous carbon used for the composite was synthesized by pyrolysis followed by chemical activation. Both scanning electron microscopy (SEM) and X-ray diffraction displayed Co3O4 and TiO2 phases well embedded onto the carbon matrices. Cyclic voltammetry in 6 M KOH electrolyte demonstrated that the composite has an excellent specific capacity of 946 Fg-1 for Co3O4/TiO2/Ac as compared to Co3O4/Ac, TiO2/Ac, and Ac with specific capacitances of 845, 340, and 308 F g−1, respectively at 5 mVs−1. Impedance spectroscopy reveals that the composite has good capacitive behavior with a series resistance of 0.6 Ω. Besides, Co3O4/TiO2/Ac maintains 89.7% of the initial capacitance after 2000 cycles. This study shows that the synergistic effect of the metal oxides and the carbon in the composite can enhance capacitance for practical supercapacitor applications.Item Porous carbon derived from Artocarpus heterophyllus peels for capacitive deionization electrodes(Elsevier, 2019) Elisadiki, Joyce; Jande, Yusufu Abeid Chande; Machunda, Revocatus Lazaro; Kibona, Talam EnockSustainable clean water for human use can be attained through cost effective water purification technologies where by capacitive deionization (CDI) technology is among them. To attain high CDI performance porous carbon materials with good electrical conductivity, high surface area, specific capacitance and good chemical stability are essential. In this study high surface area porous carbon has been synthesized through carbonization of agricultural waste jackfruit peels (Artocarpus heterophyllus) followed by KOH activation at 600, 700, and 800 °C for 1 h. It was found that, the activation temperature significantly increased the BET surface area of the synthesized carbon from 607 m2/g to 1955 m2/g. Desalination experiments were carried out with 30–500 mg/L NaCl solution in batch mode at a flow rate of 2.5 ml/min while applying voltage of 1.2, 1.4 and 2.0 V to the cell. The electrosorption capacity and salt-removal efficiency increased with increasing BET Surface area and applied potential. Specifically, ACJF1:1-700 exhibited highest specific capacitance of 307 F/g, high salt removal efficiency and electrosorption capacity of 5.74 mg/g when voltage of 2 V was applied. These results indicated that the Artocarpus heterophyllus can be promising CDI electrode materials for low salinity water desalination.Item Status of biomass derived carbon materials for supercapacitor application(Hindawi, 2017) Enock, Talam Kibona; King’ondu, Cecil K; Pogrebnoi, Alexander; Jande, Yusufu Abeid ChandeEnvironmental concerns and energy security uncertainties associated with fossil fuels have driven the world to shift to renewable energy sources. However, most renewable energy sources with exception of hydropower are intermittent in nature and thus need storage systems. Amongst various storage systems, supercapacitors are the promising candidates for energy storage not only in renewable energies but also in hybrid vehicles and portable devices due to their high power density. Supercapacitor electrodes are almost invariably made of carbon derived from biomass. Several reviews had been focused on general carbon materials for supercapacitor electrode. This review is focused on understanding the extent to which different types of biomasses have been used as porous carbon materials for supercapacitor electrodes. It also details hydrothermal microwave assisted, ionothermal, and molten salts carbonization as techniques of synthesizing activated carbon from biomasses as well as their characteristics and their impacts on electrochemical performance.