Browsing by Author "Hussain, Manwar"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Aminated polyethersulfone-silver nanoparticles (AgNPs-APES) compositemembranes with controlled silver ion release for antibacterial and water treatment applications(Materials Science and Engineering C, 2016-02-10) Haider, M. Salman; Shao, Godlisten N.; Imran, S.M; Park, Seongsoo; Abbas, Nadir; Tahir, M.S; Hussain, Manwar; Bae, Wookeun; Kim, HTThe present study reports the antibacterial disinfection properties of a series of silver nanoparticle (AgNP) immobilized membranes. Initially, polyethersulfone (PES) was functionalized through the introduction of amino groups to form aminated polyethersulfone (NH2-PES, APES). AgNPs were then coordinately immobilized on the surface of the APES composite membrane to formAgNPs-APES. The properties of the obtainedmembrane were examined by FT-IR, XPS, XRD, TGA, ICP-OES and SEM-EDAX analyses. These structural characterizations revealed that AgNPs ranging from 5 to 40 nm were immobilized on the surface of the polymer membrane. Antibacterial tests of the samples showed that the AgNPs-APES exhibited higher activity than the AgNPs-PES un-functionalized membrane. Generally, the AgNPs-APES 1 cm × 3 cm strip revealed a four times longer life than the un-functionalized AgNPs polymer membranes. The evaluation of the Ag+ leaching properties of the obtained samples indicated that approximately 30% of the AgNPs could be retained, even after 12 days of operation. Further analysis indicated that silver ion release can be sustained for approximately 25 days. The present study provides a systematic and novel approach to synthesize water treatment membranes with controlled and improved silver (Ag+) release to enhance the lifetime of the membranes.Item Electroconductive performance of polypyrrole/graphene nanocomposites synthesized through in situ emulsion polymerization(JOURNAL OF APPLIED POLYMER SCIENCE, 2014-11-22) Imran, S.M; Shao, Godlisten N.; Haider, M. Salman; Abbas, Nadir; Hussain, Manwar; Kim, HTThe present study demonstrates a modified in situ emulsion polymerization (EP) approach convenient for the formation of polypyrrole/graphene (PPy/GN) nanocomposites with harnessed conductivities. A series of PPy/GN nanocomposites were prepared by loading different weight percent (wt %) of GN during in situ EP of pyrrole monomer. The polymerization was carried out in the presence of dodecyl benzene sulfonic acid, which acts as an emulsifier and protonating agent. The microstructures of the nanocomposites were studied by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared, X-ray photoelectron spectroscopy, UV–vis spectroscopy, Raman spectroscopy, photoluminescence spectroscopy and thermogravimetric analyses. The electrical conductivities of the nanocomposite pellets pressed at different applied pressures were determined using four probe analyzer. The electrical conductivities of the nanocomposites were considerably enhanced as compared to those of the individual PPy samples pressed at the same pressures. An enhanced conductivity of 717.06 S m21 was observed in the sample with 5 wt % GN loading and applied pressure of 8 tons. The results of the present study signify that the addition of GN in the PPy polymer harnesses both electrical and thermal properties of the polymer. Thus, PPy/GN nanocomposites with superior properties for various semiconductor applications can be obtained through direct loading of GN during the polymerization process.Item Enhancement of electroconductivity of polyaniline/graphene oxide nanocomposites through in situ emulsion polymerization(Journal of Material Science, 2013-10-23) Imran, S.M; Shao, Godlisten N.; Kim, You Na; Hussain, Manwar; Choa, Yong-Ho; Kim, HTThe present study introduces a systematic approach to disperse graphene oxide (GO) during emulsion polymerization (EP) of Polyaniline (PANI) to form nanocomposites with improved electrical conductivities. PANI/ GO samples were fabricated by loading different weight percents (wt%) of GO through modified in situ EP of the aniline monomer. The polymerization process was carried out in the presence of a functionalized protonic acid such as dodecyl benzene sulfonic acid, which acts both as an emulsifier and protonating agent. The microstructure of the PANI/GO nanocomposites was studied by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, UV–Vis spectrometry, Fourier transform infrared, differential thermal, and thermogravimetric analyses. The formed nanocomposites exhibited superior morphology and thermal stability. Meanwhile, the electrical conductivities of the nanocomposite pellets pressed at different applied pressures were determined using the fourprobe analyzer. It was observed that the addition of GO was an essential component to improving the thermal stability and electrical conductivities of the PANI/GO nanocomposites. The electrical conductivities of the nanocomposites were considerably enhanced as compared to those of the individual PANI samples pressed at the same pressures. An enhanced conductivity of 474 S/m was observed at 5 wt% GO loading and an applied pressure of 6 t. Therefore, PANI/GO composites with desirable properties for various semiconductor applications can be obtained by in situ addition of GO during the polymerization process.