Browsing by Author "Garje, Shivram S"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Lead(II) halide cinnamaldehyde thiosemicarbazone complexes as single source precursors for oleylamine-capped lead sulfide nanoparticles(Journal of Materials Science: Materials in Electronics, 2018) Masikane, Siphamandla C; Mlowe, Sixberth; Gervas, Charles; Revaprasadu, Neerish; Pawar, Amol S; Garje, Shivram SDifferent PbX2 (X = AcO, Cl, Br, I) metal salts were complexed to cinnamaldehyde thiosemicarbazone ligand. The resulting complexes were characterised using Fourier Transform Infrared spectroscopy, 1H and 13C {1H} Nuclear Magnetic Resonance spectroscopy, elemental analysis and thermogravimetric analysis techniques. They were then used as single source precursors for the preparation of lead sulfide (PbS) nanoparticles using the colloidal thermolysis route where oleylamine is used as the passivating agent. Each SSP is thermolysed at reaction temperatures of 190, 230 and 270 °C. Predominantly cubic-shaped PbS nanoparticles were obtained, with an exception of the truncated nanocubes obtained from thermolysis of the SSP prepared from lead bromide. Varying particle sizes are obtained when the halogen is varied, ranging from ca. 50 to 400 nm. The optical absorbance of the PbS nanoparticles in the UV-Vis- NIR range was found to be blue-shifted when compared to bulk PbS.Item Preparation of Iron Sulfide Nanomaterials from Iron (II) Thiosemicarbazone Complexes and Their Application in Photodegradation of Methylene Blue(Journal of Inorganic and Organometallic Polymers and Materials, 2018-05) Suroshe, Jagruti S; Mlowe, Sixberth; Garje, Shivram S; Revaprasadu, NeerishIron sulfide nanomaterials were prepared by the solvothermal decomposition of two single source precursors i.e. [FeCl2(cinnamtscz)2] (1) (cinnamtscz = cinnamaldehyde thiosemicarbazone) and [FeCl2(benztscz)2] (2) (benztscz = benzaldehyde thiosemicarbazone) at different temperatures of 230 and 300 °C in the presence of oleylamine. Powder X-ray diffractometry shows the formation of the pyrrhotite phase at both reaction temperatures. The solvothermal decomposition of [FeCl2(cinnamtscz)2] and [FeCl2(benztscz)2] at 230 °C produced iron sulfide nanoparticles in the form of spheres. When the temperature was increased to 300 °C, particles in the form of hexagons and nanorods were obtained. Furthermore, the photocatalytic activities of all the four iron sulfide nanomaterials were tested for the degradation of methylene blue under visible light irradiation. Amongst all the materials, nanospheres of iron sulfide obtained by the solvothermal decomposition of [FeCl2(benztscz)2] at 230 °C showed the highest photocatalytic efficiency (88.40%).