Browsing by Author "Gadain, Hussein"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Estimation of Design Floods in Un-gauged Catchments using a Regional Index Flood Method. A Case Study of Lake Victoria Basin in Kenya(Elsevier, 2014) Norbert, Joel; Mugo, Margaret; Gadain, HusseinReliable estimation of flood magnitudes corresponding to required return periods, vital for structural design purposes, is impacted by lack of hydrological data in the study area of Lake Victoria Basin in Kenya. Use of regional information, derived from data at gauged sites and regionalized for use at any location within a homogenous region, would improve the reliability of the design flood estimation. Therefore, the regional index flood method has been applied. Based on data from 14 gauged sites, a delineation of the basin into two homogenous regions was achieved using elevation variation (90-m DEM), spatial annual rainfall pattern and Principal Component Analysis of seasonal rainfall patterns (from 94 rainfall stations). At site annual maximum series were modelled using the Log normal (LN) (3P), Log Logistic Distribution (LLG), Generalized Extreme Value (GEV) and Log Pearson Type 3 (LP3) distributions. The parameters of the distributions were estimated using the method of probability weighted moments. Goodness of fit tests were applied and the GEV was identified as the most appropriate model for each site. Based on the GEV model, flood quantiles were estimated and regional frequency curves derived from the averaged at site growth curves. Using the least squares regression method, relationships were developed between the index flood, which is defined as the Mean Annual Flood (MAF) and catchment characteristics. The relationships indicated area, mean annual rainfall and altitude were the three significant variables that greatly influence the index flood. Thereafter, estimates of flood magnitudes in ungauged catchments within a homogenous region were estimated from the derived equations for index flood and quantiles from the regional curves. These estimates will improve flood risk estimation and to support water management and engineering decisions and actions.Item Impacts of Land-use/cover Changes on the Hydrology of the Transboundary Mara River, Kenya/Tanzania(Blackwell Publishing Ltd., 2008-05-04) Mati, Bancy M.; Mutie, Simon; Gadain, Hussein; Home, Patrick; Mtalo, Felix W.The Mara River is the lifeline of the transboundary Mara basin across Kenya and Tanzania. The basin is considered one of the more serene subcatchments of the Lake Victoria Basin and ultimately the Nile Basin, and traverses the famous Maasai Mara and Serengeti National Parks. The basin also contains forests, large-scale farms, smallholder farms, pastoral grazing lands, as well as hunter gatherers and fishers. There is growing concern, however, regarding land degradation in the basin, particularly deforestation in the headwaters, that is affecting the natural resource base and the river flows. Accurate scientific data are required to advise policy, and to plan appropriate mitigation measures. This study utilizes remote sensing and geographical information system (GIS) tools, and hydrological and ground-truth studies to determine the magnitude of the land-use/cover changes in the Mara River Basin, and the effects of these changes on the river flows over the last 30 years. The study results indicate that land-use/cover changes have occurred. In 1973, for example, rangelands (savannah, grasslands and shrublands) covered 10 989 km2 (79%) of the total basin area. The rangelands had been reduced to 7245 km2 (52%) by 2000, however, while the forest areas were reduced by 32% over the same period. These changes have been attributed to the encroachment of agriculture, which has more than doubled (203%) its land area over the same period. The hydrology of the Mara River also has changed, with sharp increases in flood peak flows by 7%, and an earlier occurrence of these peaks by 4 days between 1973 and 2000. There is evidence of increased soil erosion in the upper catchments, with silt build-up in the downstream floodplains. This has caused the Mara wetland to expand by 387%, adversely affecting riparian agriculture. There is need for urgent action to stem the land degradation of the Mara River Basin, including planning and implementing appropriate mitigation measures.