Agbro, E.Materego, Myeji C.Lawes, MalcolmTomlin, A. S.2016-09-272016-09-272015Agbro, E., Materego, M., Lawes, M. and Tomlin, A.S., 2015. Low temperature ignition properties of n-butanol: key uncertainties and constraints. HMCS.http://hdl.handle.net/20.500.11810/4302A recent kinetic mechanism (Sarathy et al., 2012) describing the low temperature oxidation of n-butanol was investigated using both local and global sensitivity/uncertainty analysis methods with ignition delays as predictive targets over temperature ranges of 678-898 K and equivalence ratios ranging from 0.5-2.0 at 15 bar. The study incorporates the effects of uncertainties in forward rate constants on the predicted outputs, providing information on the robustness of the mechanism over a range of operating conditions. A global sampling technique was employed for the determination of predictive error bars, and a high dimensional model representation (HDMR) method was further utilised for the calculation of global sensitivity indices following the application of a linear screening method. Predicted ignition delay distributions spanning up to an order of magnitude indicate the need for better quantification of the most dominant reaction rate parameters. The calculated first-order sensitivities from the HDMR study show the main fuel hydrogen abstraction pathways via OH as the major contributors to the predicted uncertainties. Sensitivities indicate that no individual rate constant dominates uncertainties under any of the conditions studied, but that strong constraints on the branching ratio for H abstraction by OH at the α and γ sites are provided by the measurements.enLow Temperature Ignition Properties of N-Butanol: Key Uncertainties and ConstraintsConference Proceedings