COMMON FIXED POINTS FOR FOUR NON-SELF-MAPPINGS IN PARTIAL METRIC SPACES

Terentius Rugumisa, Santosh Kumar and Mohammad Imdad

(Received January 16, 2018)

Abstract. In this paper, we formulate a common fixed point theorem for four non-self mappings in convex partial metric spaces. The result extends a fixed point theorem by Gajić and Rakočević [Pair of non-self mappings and common fixed points. Appl. Math. Comp. 187 (2007), 999-1006] proved for two non-self mappings in metric spaces with a Takahashi convex structure. We also provide an illustrative example on the use of the theorem.

Keywords: Common fixed point, convex partial metric space, non-self mapping.

MSC 2010: 47H10, 54H25

1. Introduction and Preliminaries

Gajić and Rakočević [5] proved a common fixed point theorem for non-self mappings on a Takahashi convex metric space for a pair of mappings. In their work, they generalized the theorems by Jungck [7], Das and Naik [4], Ćirić et al. [3], Ćirić [2] and Imdad and Kumar [6]. In this study, we extend the theorem by Gajić and Rakočević to apply for two pairs of non-self mappings in convex partial metric spaces.

We now introduce those results which will be of use in this paper.

Definition 1.1. [8] A partial metric on a non-empty set X is a mapping $p : X \times X \to [0, \infty)$ such that for all $x, y, z \in X$,

(P0): $0 \leq p(x, x) \leq p(x, y)$,
(P1): $x = y$ if and only if $p(x, x) = p(x, y) = p(y, y)$,
(P2): $p(x, y) = p(y, x)$ and
(P3): $p(x, y) \leq p(x, z) + p(z, y) - p(z, z)$.

A pair (X, p) is said to be a partial metric space.
From Definition 1.1, we deduce that for all x, y, z in a partial metric space (X, p), we have:

(1.1) \hspace{1cm} (i) \quad p(x, y) = 0 \text{ implies } x = y,
(1.2) \hspace{1cm} (ii) \quad p(x, y) \leq p(x, z) + p(z, y).

Proof. If $p(x, y) = 0$, then $p(x, x) = 0$ because $0 \leq p(x, x) \leq p(x, y)$ from (P0). Similarly, $p(x, y) = 0$ implies $p(y, y) = 0$ because $0 \leq p(y, y) \leq p(x, y)$. Hence $p(x, y) = 0$ implies $p(x, x) = p(x, y) = p(y, y) = 0$. From (P1) this means that $x = y$.

From (P3), we infer that $p(x, y) \leq p(x, z) + p(z, y)$.

As an example, let $X = \mathbb{R}^+$ and let $p : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$, $p(x, y) = \max\{x, y\}$. Then (X, p) is a partial metric space.

Each partial metric p on X generates a T_0 topology τ_p on X with a base being the family of open balls $\{B_p(x, \varepsilon) : x \in X, \varepsilon > 0\}$ where $B_p(x, \varepsilon) = \{y \in X : p(x, y) < p(x, x) + \varepsilon\}$ for all $x \in X$ and $\varepsilon > 0$.

A sequence $\{x_n\}$ in a partial metric space (X, p) converges to $x \in X$ if and only if

$$p(x, x) = \lim_{n \to \infty} p(x, x_n).$$

Definition 1.2. [8] Let (X, p) be a partial metric space and $\{x_n\}$ be a sequence in X. Then

(i) $\{x_n\}$ converges to a point $x \in X$ if and only if $p(x, x) = \lim_{n \to +\infty} p(x, x_n)$,
(ii) $\{x_n\}$ is called a Cauchy sequence if $\lim_{n,m \to +\infty} p(x_n, x_m)$ exists and finite,
(iii) A partial metric space (X, p) is said to be complete if every Cauchy sequence $\{x_n\}$ in X converges, with respect to τ_p, to a point $x \in X$ such that

$$p(x, x) = \lim_{n,m \to +\infty} p(x_n, x_m).$$

Lemma 1.3. [8] If p is a partial metric on X, then the mapping $p^* : X \times X \to \mathbb{R}^+$ given by

$$p^*(x, y) = 2p(x, y) - p(x, x) - p(y, y)$$

is a metric.

In this paper we will denote p^* as the metric derived from the partial metric p.
Lemma 1.4. [8] Let (X, p) be a partial metric space and $\{x_n\}$ be a sequence in X. Then

(i) $\{x_n\}$ is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric space (X, p^*).

(ii) (X, p) is complete if and only if (X, p^*) is complete. Furthermore, $\lim_{n \to \infty} p(x_n, x)$ is zero if and only if $p(x, x) = \lim_{n \to \infty} p(x_n, x) = \lim_{n \to \infty} p(x_n, x_m)$.

We define 0-complete partial metric spaces.

Definition 1.5. [8] Let (X, p) be a partial metric space and $\{x_n\}$ be a sequence in X. Then

(i) the sequence $\{x_n\}$ is called 0-Cauchy if $\lim_{n, m \to \infty} p(x_n, x_m) = 0$,

(ii) (X, p) is said to be 0-complete if every 0-Cauchy sequence $\{x_n\}$ in X converges, with respect to τ_p, to a point $x \in X$ such that $p(x, x) = 0$.

We define a convex partial metric space.

Definition 1.6. [10] Let (X, p) be a partial metric space and $I = [0, 1]$ be the closed unit interval. A mapping $W : X \times X \times I \to X$ is said to be a convex structure on X if for all $(x, y, t) \in X \times X \times I$,

$$p(u, W(x, y, t)) \leq tp(u, x) + (1 - t)p(u, y)$$

for every $u \in X$. A partial metric space (X, p), together with the convex structure W, is called a convex partial metric space.

If (X, p) is a convex partial metric space, then for every $x, y \in X$, we define

$$(1.3) \quad \text{seg}[x, y] := \{W(x, y, t) : t \in [0, 1]\}.$$

In this study, we will use the following properties for a convex partial metric space with convex structure W.

Lemma 1.7. Let $x, y \in X$ where (X, p) is a convex partial metric space with convex structure W. Let $w \in \text{seg}[x, y]$. Then for all $u \in X$, we have

(i) $p(u, w) \leq \max\{p(u, x), p(u, y)\}$,

(ii) $p(x, w) \leq p(x, y)$.

Proof. Suppose $\Gamma = \max\{p(u, x), p(u, y)\}$. Applying Definition 1.6, we have

$$p(u, w) \leq tp(u, x) + (1 - t)p(u, y)$$

$$\leq t\Gamma + (1 - t)\Gamma$$

$$= \Gamma$$

$$= \max\{p(u, x), p(u, y)\}.$$
We have proved Lemma 1.7 (i). Now let us set \(x = u \) in Lemma 1.7 (i). We get

\[
p(x, u) \leq \max\{p(x, x), p(x, y)\} = p(x, y),
\]
from P0 of Definition 1.1.

\[\square\]

Definition 1.8. [1] Let \((X, p)\) be a partial metric space and \(B \subseteq X \). Then

(i) \(B \) is said to be bounded if there is a positive number \(M \) such that \(p(x, y) \leq M \) for all \(x, y \in B \),

(ii) if \(B \) is a bounded set, the diameter of \(B \) is defined as

\[
diam(B) = \sup_{u, v \in B} \{p(u, v)\}.
\]

Let \(f : C \to X \) be a mapping, where \(C \subseteq X \). We say that \(f \) is a self mapping if \(C = X \), otherwise \(f \) is called a non-self mapping. If there is an element \(x \in C \) such that \(fx = x \), we say that \(x \) is a fixed point of \(f \) in \(X \).

Suppose we have two mappings \(f, g : C \to X \), with \(C \subseteq X \). Let there be \(x \in C \) such that \(fx = gx = w \). We say that \(x \) is a coincidence point of \(f \) and \(g \) in \(X \). If \(x = w \), then we call \(x \) a common fixed point of \(f \) and \(g \) in \(X \).

Suppose we have two mappings \(f, g : C \to X \) with \(C \subseteq X \). We say \(f \) and \(g \) are coincidentally commuting if for all \(x \in C \), we have

\[fx = gx \Rightarrow gfx = gfx.\]

In this paper, we aim to extend the following theorem by Gajić and Rakočević [5] which proves the existence of a common fixed point for non-self mappings in context of metric spaces under specified conditions.

Theorem 1.9. [5] Let \((X, d)\) be a complete Takahashi convex metric space with convex structure \(W \) which is continuous in the third variable. Let \(C \) be a non-empty closed subset of \(X \) and \(\partial C \) be the boundary of \(C \). Let \(f, g : C \to X \) and suppose \(\partial C \neq \emptyset \). Let us assume that \(f \) and \(g \) satisfy the following conditions:

(i) For every \(x, y \in C \), \(d(gx, gy) \leq M_\omega(x, y) \) where \(M_\omega(x, y) = \max\{\omega_1[d(fx, fy)], \omega_2[d(fx, gx)], \omega_3[d(fy, gy)], \omega_4[d(fx, gy)]\} \), \(\omega_i : [0, +\infty) \to [0, +\infty) \), \(i \in \{1, 2, 3, 4, 5\} \) is a non-decreasing semicontinuous function from the right, such that \(\omega_i(r) < r \) for \(r > 0 \), and \(\lim_{r \to \infty}[r - \omega_i(r)] = +\infty \),

(ii) \(\partial C \subseteq f(C) \),

(iii) \(g(C) \cap C \subset f(C) \),

(iv) \(fx \in \partial C \Rightarrow gx \in C \) and

(v) \(f(C) \) is closed in \(X \).
Then there exists a coincidence point \(v \) in \(C \). Moreover, if \(\{ f, g \} \) are coincidentally commuting, then \(v \) remains a unique common fixed point of \(f \) and \(g \).

We now proceed to the main results.

2. Main Results

In this section, we extend Theorem 1.9 to two pairs of non-self mappings. We prove the following assumption:

Theorem 2.1. Let \((X, p)\) be a complete convex partial metric space with convex structure \(W \) which is continuous in the third variable. Let \(C \) be a closed subset of \(X \) with a non-empty boundary \(\partial C \). Let
\[S, T, A, B : C \to X. \]
Let us assume that \(S, T, A \) and \(B \) satisfy the following conditions:

(i) For every \(x, y \in C \), \(p(Ax, By) \leq M_\omega(x, y) \) where
\[M_\omega(x, y) = \max \{ \omega_1[p(Sx, Ty)], \omega_2[p(Ax, Sx)], \omega_3[p(By, Ty)], \omega_4[p(Ax, Ty)], \omega_5[p(Sx, By)] \}, \]
\(\omega_i : [0, +\infty) \to [0, +\infty), i = 1, 2, 3, 4, 5, \) is a non-decreasing semicontinuous function from the right, such that \(\omega_i(r) < r/2 \) for \(r > 0 \), and
\[\lim_{r \to +\infty} [r - 2\omega_i(r)] = +\infty. \]

(ii) \(\partial C \subseteq TC, \partial C \subseteq SC \),
(iii) \(Sx \in \partial C \Rightarrow Ax \in C \); \(Tx \in \partial C \Rightarrow Bx \in C \),
(iv) \(AC \cap C \subseteq TC, BC \cap C \subseteq SC \) and
(v) \(SC, TC \) are closed in \(C \).

Then there exists a coincidence point \(z \in C \) for \(A, B, S \) and \(T \). Moreover, if each of the pairs \(\{ S, A \} \) and \(\{ T, B \} \) is coincidentally commuting, then \(z \) remains a unique common fixed point of \(A, B, S \) and \(T \).

Proof. Commencing with an arbitrary point \(w \in \partial C \), we construct a sequence \(\{ x_n \} \) of points in \(C \) as follows:

From assumption (ii), there is a point \(x_0 \in C \) such that \(Sx_0 = w \). We find \(Ax_0 \).

Then we proceed inductively as follows.

If \(Ax_{2n} \in C \), then, by (iv), we choose \(x_{2n+1} \in C \) such that \(Tx_{2n+1} = Ax_{2n} \).

If however \(Ax_{2n} \notin C \), because \(W \) is continuous in the third variable, it means that, by (iii), there is \(\lambda_{2n, 2n} \in (0, 1) \) such that
\[W(Sx_{2n}, Ax_{2n}, \lambda_{2n, 2n}) \in \partial C. \]

By (ii), this means we can choose \(x_{n+1} \in C \) such that
\[Tx_{n+1} = W(Sx_{2n}, Ax_{2n}, \lambda_{2n, 2n}) \in \partial C. \]

By the construction, \(x_{n+1} \) belongs to \(C \) for all \(n \). Hence, \(\{ x_n \} \) is a Cauchy sequence in \(C \).

Since \(\partial C \subseteq TC, \partial C \subseteq SC \), \(\{ x_n \} \) converges in \(C \) to a point \(z \), which is a coincidence point of \(S, T, A \) and \(B \).
We then determine Bx_{2n+1}.

If $Bx_{2n+1} \in C$, then, by (iv), we choose $x_{2n+2} \in C$ such that $Sx_{2n+2} = Bx_{2n+1}$.

However if $Bx_{2n+1} \notin C$, because W is continuous in the third variable, this means there is $\lambda_{2n+1,2n+1} \in (0,1)$ such that

$$W(Tx_{2n+1}, Bx_{2n+1}, \lambda_{2n+1,2n+1}) \in \partial C.$$

By (ii), this means we can choose $x_{n+2} \in C$ such that

$$Sx_{n+2} = W(Tx_{2n+1}, Bx_{2n+1}, \lambda_{2n+1,2n+1}).$$

We then determine Ax_{2n+2}.

We show that, for $n \geq 1$, we have

$$(2.1) \quad Ax_{2n} \neq Tx_{2n+1} \Rightarrow Bx_{2n-1} = Sx_{2n}.$$

Suppose we have $Bx_{2n-1} \neq Sx_{2n}$. Then we have $Sx_{2n} \in \partial C$, which by (iii) means $Ax_{2n} \in C$. This, by (iv), implies that $Ax_{2n} = Tx_{2n+1}$, which is a contradiction.

Using a similar argument we have

$$(2.2) \quad Bx_{2n+1} \neq Sx_{2n+2} \Rightarrow Ax_{2n} = Tx_{2n+1}.$$

We now prove that the sequences $\{Sx_{2n}\}, \{Ax_{2n}\}, \{Bx_{2n+1}\}$ and $\{Tx_{2n+1}\}$ are bounded. For each $n \geq 1$ let

$$D_n = \left(\bigcup_{i=0}^{n-1} \{Ax_{2i}\} \right) \cup \left(\bigcup_{i=0}^{n-1} \{Bx_{2i+1}\} \right) \cup \left(\bigcup_{i=0}^{n-1} \{Sx_{2i}\} \right) \cup \left(\bigcup_{i=0}^{n-1} \{Tx_{2i+1}\} \right),$$

$n \geq 1$.

Let $\alpha_n = \text{diam}(D_n)$. We show that

$$(2.3) \quad \alpha_n \leq \max \{p(Sx_0, Ax_{2j}), p(Sx_0, Bx_{2j+1})\}, 0 \leq j \leq n - 1.$$

Let us consider the case where $\alpha_n = 0, n \geq 1$.

This means $p(Sx_0, Ax_0) = p(Ax_0, Bx_1) = p(Bx_1, Tx_1) = 0$. Applying (1.2) this means

$$Sx_0 = Ax_0 = Bx_1 = Tx_1.$$

We shall show that Sx_0 is a common fixed point of S and A. As the mappings S and A are coincidentally commuting at the coincidence point x_0, we have

$$(2.4) \quad Sx_0 = Ax_0 \Rightarrow SSx_0 = SAx_0 = ASx_0.$$
From (i), we have
\[p(SSx_0, Sx_0) = p(ASx_0, Bx_1) \leq M_\omega (Sx_0, x_1) \]
\[= \max \{ \omega_1 [p(SSx_0, Tx_1), \omega_2 [p(ASx_0, SSx_0) | \omega_3 [p(Bx_1, Tx_1)], \omega_4 [p(ASx_0, Tx_1)], \omega_5 [p(SSx_0, Bx_1)] \} \]
\[= \max \{ \omega_1 [p(SSx_0, Sx_0)], \omega_2 [p(SSx_0, SSx_0)], \omega_3 [p(Sx_0, Sx_0)], \omega_4 [p(SSx_0, Sx_0)], \omega_5 [p(SSx_0, Sx_0)] \} \]
\[\leq \omega_t [p(SSx_0, Sx_0)], \text{for some } t \in \{1, 2, 3, 4, 5\}, \]
\[< \frac{1}{2} p(SSx_0, Sx_0), \text{for } p(SSx_0, Sx_0) > 0 \]
\[\Rightarrow p(SSx_0, Sx_0) = 0. \]

By (1.2), this implies
\[(2.5) \quad SSx_0 = Sx_0. \]

Hence Sx_0 is a fixed point of S. From (2.4) we have $SSx_0 = ASx_0$. Thus (2.5) implies $ASx_0 = Sx_0$, making Sx_0 a fixed point of A too.

Using a similar argument we have $Tx_1 = Sx_0$ being a common fixed point of T and B. Hence, $z = Sx_0$ is a common fixed point of all four mappings S, T, A and B.

To show the uniqueness of the fixed point, let z' be also a fixed point of S, T, A and B. Then we have
\[p(z, z') = p(Az, Bz') \]
\[\leq \max \{ \omega_1 [p(z, Tz'), \omega_2 [p(Az, Sz)], \omega_3 [p(Bz', Tz')] \}, \omega_4 [p(Az, Tz')], \omega_5 [p(Sz, Bz')] \} \]
\[= \max \{ \omega_1 [p(z, z')], \omega_2 [p(z, z)], \omega_3 [p(z', z')], \omega_4 [p(z, z')], \omega_5 [p(z, z')] \} \]
\[\leq \omega_i [p(z, z')] \text{ for some } i \in \{1, 2, 3, 4, 5\} \]
\[< \frac{1}{2} p(z, z'), \text{for } p(z, z') > 0, \]
\[\Rightarrow p(z, z') = 0 \]
\[\Rightarrow z = z, \text{ by (1.1)}. \]

Hence when $\alpha_n = 0$, $z = Sx_0$ is the unique common fixed point of S, T, A and B.

We now consider the cases when $\alpha_n > 0$.

Case 1: Consider the case where $\alpha_n = p(Sx_{2i}, Ax_{2j})$ for some $0 \leq i, j \leq n - 1$.

(1. i) If $i \geq 1$ and $Sx_{2i} = Bx_{2i-1}$ we have

\[\alpha_n = p(Sx_{2i}, Ax_{2j}) = p(Ax_{2j}, Bx_{2i-1}) \]
\[\leq M_w(x_{2j}, x_{2i-1}) \]
\[\leq \omega_s(\alpha_n) \text{ for some } s \in \{1, 2, 3, 4, 5\} \]
\[< \frac{1}{2}\alpha_n, \]

which is a contradiction. Hence $i = 0$.

(1.ii) If however $i \geq 1$ and $Sx_{2i} \neq Bx_{2i-1}$, it implies $Sx_{2i} \in \text{seg}[Ax_{2i-2}, Bx_{2i-1}]$ and hence, by Lemma 1.7 (i), we have

\[\alpha_n = p(Sx_{2i}, Ax_{2j}) \leq \max\{p(Ax_{2j}, Bx_{2i-1}), p(Ax_{2i-2}, Ax_{2j})\}. \]

(1.ii.1) If $p(Ax_{2j}, Bx_{2i-1}) \geq p(Ax_{2i-2}, Ax_{2j})$, we have

\[\alpha_n = p(Sx_{2i}, Ax_{2j}) \leq p(Ax_{2j}, Bx_{2i-1}), \]

which leads to the contradiction in (1. i), meaning that $i = 0$.

(1.ii.2) Otherwise, if $p(Ax_{2j}, Bx_{2i-1}) < p(Ax_{2i-2}, Ax_{2j})$, then for some k such that $2i - 2 < 2k + 1 < 2j$ and for some $s, t \in \{1, 2, \ldots, 5\}$, we have

\[\alpha_n = p(Sx_{2i}, Ax_{2j}) \leq p(Ax_{2i-2}, Ax_{2j}) \]
\[\leq p(Ax_{2i-2}, Bx_{2k+1}) + p(Ax_{2j}, Bx_{2k+1}), \text{ by (1.2)} \]
\[\leq M_w(x_{2i-2}, x_{2i-1}) + M_w(x_{2j}, x_{2i-1}) \]
\[\leq \omega_s(\alpha_n) + \omega_t(\alpha_n) \]
\[< \frac{1}{2}\alpha_n + \frac{1}{2}\alpha_n \]
\[\Rightarrow \alpha_n < \alpha_n, \]

which is a contradiction. Hence $i = 0$.

Case 2: The case where $\alpha_n = p(Ax_{2i}, Bx_{2j+1})$ leads to contradiction by (1. i).

Case 3: The case where $\alpha_n = p(Ax_{2i}, Ax_{2j})$ leads to contradiction by (1.ii.2).
Case 4: If $\alpha_n = p(Bx_{2i+1}, Bx_{2j+1})$ then for k such that $2i + 1 < 2k < 2j + 1$ and for some $s, t \in \{1, 2, \ldots, 5\}$, we have
\[
\alpha_n = p(Bx_{2i+1}, Bx_{2j+1}) \\
\leq p(Ax_{2k}, Bx_{2i+1}) + p(Ax_{2k}, Bx_{2j+1}) \\
\leq M_\omega(x_{2k}, x_{2i+1}) + M_\omega(x_{2k}, x_{2j+1}) \\
\leq \omega_s(\alpha_n) + \omega_t(\alpha_n) \\
< \frac{1}{2} \alpha_n + \frac{1}{2} \alpha_n \\
\Rightarrow \alpha_n < \alpha_n,
\]
which is a contradiction.

Case 5: If $\alpha_n = p(Tx_{2i+1}, Bx_{2j+1})$ for some $0 \leq i, j \leq n - 1$, then:

(5.i) If $Tx_{2i+1} = Ax_{2i}$, then we have
\[
\alpha_n = p(Tx_{2i+1}, Bx_{2j+1}) = p(Ax_{2i}, Bx_{2j+1}),
\]
which is a contradiction by (1.i).

(5.ii) Otherwise, if $Tx_{2i+1} \neq Ax_{2i}$ then $Tx_{2i+1} \in \text{seg}[Bx_{2i-1}, Ax_{2j}]$ and hence by Lemma 1.7 (i) we have
\[
\alpha_n = p(Tx_{2i+1}, Bx_{2j+1}) \leq \max\{p(Bx_{2i-1}, Bx_{2j+1}), p(Ax_{2i}, Bx_{2j+1})\}.
\]
This means we have either $p(Tx_{2i+1}, Bx_{2j+1}) \leq p(Bx_{2i-1}, Bx_{2j+1})$, which is a contradiction by Case 4 or $p(Tx_{2i+1}, Bx_{2j+1}) \leq p(Ax_{2i}, Bx_{2j+1})$, which is a contradiction by (1.i).

Case 6: If $\alpha_n = p(Tx_{2i+1}, Ax_{2j})$ for some $0 \leq i, j \leq n - 1$, then:

(6.i) If $Tx_{2i+1} = Ax_{2i}$, then we have $\alpha_n = p(Tx_{2i+1}, Ax_{2j}) = p(Ax_{2i}, Ax_{2j})$ which is not possible by (1.ii.2)

(6.ii) Otherwise, if $Tx_{2i+1} \neq Ax_{2i}$, then $Tx_{2i+1} \in \text{seg}[Bx_{2i-1}, Ax_{2j}]$ and hence $\alpha_n = p(Tx_{2i+1}, Ax_{2j}) \leq \max\{p(Ax_{2j}, Bx_{2i-1}), p(Ax_{2i}, Ax_{2j})\}$. This implies we have either $p(Tx_{2i+1}, Ax_{2j}) \leq p(Ax_{2j}, Bx_{2i-1})$, which is a contradiction by (1.i) or else we have $p(Tx_{2i+1}, Ax_{2j}) \leq p(Ax_{2i}, Ax_{2j})$, which is a contradiction by (1.ii.2).

Case 7: Suppose $\alpha_n = p(Tx_{2i+1}, Tx_{2j+1})$ for some $0 \leq i, j \leq n - 1$.

(7.i) If $Tx_{2j+1} = Ax_{2j}$, we have $\alpha_n = p(Tx_{2i+1}, Tx_{2j+1}) = p(Tx_{2i+1}, Ax_{2j})$, which is a contradiction by Case 6.

(7.ii) Otherwise if $Tx_{2j+1} \neq Ax_{2j}$, then $Tx_{2j+1} \in \text{seg}[Bx_{2j-1}, Ax_{2j}]$ and hence $\alpha_n = p(Tx_{2i+1}, Tx_{j+1}) \leq \max\{p(Tx_{2i+1}, Bx_{2j-1}), p(Tx_{2i+1}, Ax_{2j})\}$.

This implies we have either $p(Tx_{2i+1}, Tx_{2j+1}) \leq p(Tx_{2i+1}, Bx_{2j-1})$, which results in a contradiction by Case 5 or else we have $p(Tx_{2i+1}, Tx_{2j+1}) \leq p(Tx_{2i+1}, Ax_{2j})$, which is a contradiction by Case 6.
Case 8: Let $\alpha_n = p(Sx_{2i}, Bx_{2j+1})$, for some $0 \leq i, j \leq n - 1$.

(8.i) If $i \geq 1$ and $Sx_{2i} = Bx_{2i-1}$, then
$\alpha_n = p(Sx_{2i}, Bx_{2j+1}) = p(Bx_{2i-1}, Bx_{2j+1})$ which is not possible as per Case 4. Hence $i = 0$.

(8.ii) If however $i \geq 1$ and $Sx_{2i} \neq Bx_{2i-1}$ it means that
$Sx_{2i} \in \text{seg}[Ax_{2i-2}, Bx_{2i-1}]$. This implies that
$\alpha_n = p(Sx_{2i}, Bx_{2j+1}) \leq \max\{p(Ax_{2i-2}, Bx_{2j+1}), p(Bx_{2i-1}, Bx_{2j+1})\}$.

This leads to a contradiction by (1.i) when
$p(Sx_{2i}, Bx_{2j+1}) \leq p(Ax_{2i-2}, Bx_{2j+1})$ and a contradiction by Case 4 when it happens
that $p(Sx_{2i}, Bx_{2j+1}) \leq p(Bx_{2i-1}, Bx_{2j+1})$. Hence $i = 0$.

Case 9: Let us consider when $\alpha_n = p(Sx_{2i}, Sx_{2j})$, for some $0 \leq i < j \leq n - 1$.

(9.i) If $i \geq 1$ and $Sx_{2j} = Bx_{2j-1}$ then we have
$\alpha_n = p(Sx_{2i}, Sx_{2j}) = p(Sx_{2i}, Bx_{2j-1})$, which leads to a contradiction according to
Case 8. Hence $i = 0$.

(9.ii) If $i \geq 1$ and $Sx_{2j} \neq Bx_{2j-1}$, it implies that $Sx_{2j} \in \text{seg}[Ax_{2j-2}, Bx_{2j-1}]$ and
$p(Sx_{2i}, Sx_{2j}) \leq \max\{p(Sx_{2i}, Ax_{2j-2}), p(Sx_{2i}, Bx_{2j-1})\}$.

If it happens $p(Sx_{2i}, Sx_{2j}) \leq p(Sx_{2i}, Ax_{2j-2})$, we get a contradiction by Case 1. However if it happens
that $p(Sx_{2i}, Sx_{2j}) \leq p(Sx_{2i}, Bx_{2j-1})$, then we get a contra-
diction by Case 8. Hence $i = 0$.

Case 10: Suppose $\alpha_n = p(Sx_{2i}, Tx_{2j+1})$, for some $0 \leq i, j \leq n - 1$.

(10.i) If $i \geq 1$ and $Sx_{2i} = Bx_{2i-1}$, then we have
$\alpha_n = p(Sx_{2i}, Tx_{2j+1}) = p(Tx_{2j+1}, Bx_{2i-1})$ which is not possible as per Case 8. Hence $i = 0$.

(10.ii) If however $i \geq 1$ and $Sx_{2i} \neq Bx_{2i-1}$ it implies that
$Sx_{2i} \in \text{seg}[Ax_{2i-2}, Bx_{2i-1}]$ and
$p(Sx_{2i}, Tx_{2j+1}) \leq \max\{p(Tx_{2j+1}, Ax_{2i-2}), p(Tx_{2j+1}, Bx_{2i-1})\}$. This leads to con-
tradictions by Case 6 and Case 5. Hence $i = 0$.

We have considered ten possible cases for α_n and conclude from Cases 1, 8, 9 and
10 that for some $0 \leq j \leq n - 1$ we have

(2.6) $\alpha_n \in \{p(Sx_0, Sx_{2j}), p(Sx_0, Ax_{2j}), p(Sx_0, Bx_{2j+1}), p(Sx_0, Tx_{2j+1})\}$.

Note that, from the construction of sequence, $Sx_{2j} \in C$ implies
$Sx_{2j} = Bx_{2j-1}$. This leads to

(2.7) $p(Sx_0, Sx_{2j}) = p(Sx_0, Bx_{2j-1})$.

For $Sx_{2j} \notin C$, we have $Sx_{2j} \in \text{seg}[Ax_{2j-2}, Bx_{2j-1}]$. From Lemma 1.7 (i), this implies

(2.8) $p(Sx_0, Sx_{2j}) \leq \max\{p(Sx_0, Ax_{2j-2}), p(Sx_0, Bx_{2j-1})\}$.
From (2.7) and (2.8) we conclude that

\[(2.9) \quad p(Sx_0, Sx_{2j}) \leq \max\{p(Sx_0, Ax_{2j-2}), p(Sx_0, Bx_{2j-1})\}.\]

Using a similar argument we also have

\[(2.10) \quad p(Sx_0, Tx_{2j+1}) \leq \max\{p(Sx_0, Bx_{2j+1}), p(Sx_0, Ax_{2j})\}.\]

Applying (2.9) and (2.10) to (2.6) we get

\[\alpha_n \leq \max\{p(Sx_0, Ax_{2j}), p(Sx_0, Bx_{2j+1})\}, \quad 0 \leq j \leq n - 1.\]

We have proved (2.3).

Consider the case where \(\max\{p(Sx_0, Ax_{2j})\} \leq \max\{p(Sx_0, Bx_{2j+1})\}, \quad 0 \leq j \leq n - 1.\) Then, for some \(u \in \{1, 2, \ldots, 5\}, (2.3)\) implies

\[\alpha_n \leq p(Sx_0, Ax_{2j+1})\]
\[\leq p(Sx_0, Ax_0) + p(Ax_0, Bx_{2j+1}), \text{ by (1.2)}\]
\[\leq p(Sx_0, Ax_0) + \omega_u[\alpha_n]\]
\[\leq p(Sx_0, Ax_0) + 2\omega_u[\alpha_n]\]
\[\Rightarrow \alpha_n - 2\omega_u[\alpha_n] \leq p(Sx_0, Ax_0).\]

Consider now, when \(\max\{p(Sx_0, Ax_{2j})\} > \max\{p(Sx_0, Bx_{2j+1})\}, \quad 0 \leq j \leq n - 1.\) Then for some \(v \in \{1, 2, \ldots, 5\}, (2.3)\) implies

\[\alpha_n \leq p(Sx_0, Ax_{2j})\]
\[\leq p(Sx_0, Ax_0) + p(Ax_0, Ax_{2j}), \text{ by (1.2)}\]
\[\leq p(Sx_0, Ax_0) + 2\omega_v[\alpha_n], \text{ by (1.ii.2)}\]
\[\Rightarrow \alpha_n - 2\omega_v[\alpha_n] \leq p(Sx_0, Ax_0).\]

Thus in both cases, we have for some \(s \in \{1, 2, \ldots, 5\}\)

\[(2.11) \quad \alpha_n - 2\omega_s[\alpha_n] \leq p(Sx_0, Ax_0).\]

By assumption (i) there is an \(r_0 \in [0, +\infty)\) such that for each \(s \in \{1, 2, \ldots, 5\},\)
\[r - 2\omega_s[r] > p(Sx_0, Ax_0)\text{ for } r > r_0.\]

There is a subsequence \(\{a_n\}\) of \(\{\alpha_n\}\) and \(s \in \{1, 2, \ldots, 5\}\) such that for each \(n,\)
we have
\[a_n - 2\omega_s[a_n] \leq p(Sx_0, Ax_0).\]
Thus by (2.11), \(a_n \leq r_0 \). Thus we have

\[
a = \lim_{n \to +\infty} a_n = \text{diam}(D) \leq r_0.
\]

We have hence proved that \(\{Sx_{2n}\}, \{Tx_{2n+1}\}, \{Ax_{2n}\} \) and \(\{Bx_{2n+1}\} \) are bounded sequences.

To prove that \(\{Sx_{2n}\}, \{Tx_{2n+1}\}, \{Ax_{2n}\} \) and \(\{Bx_{2n+1}\} \) converge in \(C \), we reflect on the set

\[
(2.12) \quad E_n = \left(\bigcup_{i=n}^{+\infty} \{Ax_i\} \right) \cup \left(\bigcup_{i=n}^{+\infty} \{Bx_{2i+1}\} \right) \cup \left(\bigcup_{i=n}^{+\infty} \{Sx_i\} \right) \cup \left(\bigcup_{i=n}^{+\infty} \{Tx_{2i+1}\} \right),
\]

\(n = 2, 3, \ldots \)

By (2.3) we have for \(n = 2, 3, \ldots \)

\[
(2.13) \quad e_n := \text{diam}(E_n) \leq \sup_{j \geq n} \{p(Sx_{2n}, Ax_j), p(Sx_{2n}, Bx_{2j+1})\}.
\]

If \(Sx_{2n} = Bx_{2n-1} \) we have as in Case 1 and Case 8, for each \(j \geq n \), and for some \(u \in \{1, 2, \ldots, 5\} \)

\[
e_n \leq \sup_{j \geq n} \{p(Ax_j, Bx_{2n-1}), p(Bx_{2j+1}, Bx_{2n-1})\}, n = 2, 3, \ldots
\]

\[
(2.14) \quad \leq 2\omega_u[e_{n-1}].
\]

If however \(Sx_{2n} \neq Bx_{2n-1} \), it implies that \(Sx_{2n} \in \text{seg}[Ax_{2n-2}, Bx_{2n-1}] \). Hence, as in Case 1 and Case 8, for each \(j \geq n \) and for some \(v \in \{1, 2, \ldots, 5\} \), we have

\[
e_n \leq \sup_{j \geq n} \{p(Ax_{2n-2}, Ax_j), p(Bx_{2n-1}, Ax_j), p(Ax_{2n-2}, Bx_{2j+1}), p(Bx_{2n-1}, Bx_{2j+1})\}, n = 2, 3, \ldots
\]

\[
(2.15) \quad \leq 2\omega_v[e_{n-2}].
\]

By (2.14) and (2.15), there is a subsequence \(\{\varepsilon_n\} \) of \(\{e_n\} \) and \(s \in \{1, 2, \ldots, 5\} \) such that for each \(n \)

\[
\varepsilon_n \leq 2\omega_s[e_{n-2}], n = 2, 3, \ldots
\]

\[
(2.16) \quad < \varepsilon_{n-2}.
\]

We note that \(e_n \geq e_{n+1} \) for every \(n \). Let \(\lim_{n \to +\infty} e_n = \lim_{n \to +\infty} \varepsilon_n = e \). We claim that \(e = 0 \).
If $e > 0$, then by (2.16) and assumption (i), we have

$$\lim_{n \to +\infty} \varepsilon_n < \lim_{n \to +\infty} \varepsilon_{n-2}$$

$$\Rightarrow e < e,$$

which is a contradiction. Hence $e = 0$.

We recall from (2.13) that $e_n = \text{Diam}(E_n)$. Taking $n, m \to +\infty$ in (2.12), we get

$$\lim_{n, m \to +\infty} p(Ax_{2n}, Ax_{2m}) = \lim_{n, m \to +\infty} p(Bx_{2n+1}, Bx_{2m+1}) = 0.$$

This means both $\{A_{2n}\}$ and $\{B_{2n+1}\}$ are Cauchy sequences.

Because X is a complete partial metric space, this means there is $z \in X$ such that

$$\lim_{n \to +\infty} Ax_{2n} = \lim_{n \to +\infty} Bx_{2n+1} = z \text{ and } p(z, z) = 0.$$

Consider the subsequence Sx_{2n_k} of Sx_{2n} such that $Sx_{2n_k} = Bx_{2n_k-1}$. Taking $n_k \to +\infty$ we have

$$\lim_{n \to +\infty} Sx_{2n} = \lim_{n \to +\infty} Sx_{2n_k} = \lim_{n \to +\infty} Bx_{2n_k-1} = z, \text{ with } p(z, z) = 0.$$

Using a similar argument we have

$$\lim_{n \to +\infty} Tx_{2n+1} = z, \text{ with } p(z, z) = 0.$$

But SC, TC are both 0-complete. This implies $z \in SC$ and $z \in TC$.

As $z \in SC$, there is a point $u \in C$ such that $Su = z$. We show that u is a coincidence point of A, B and S.

$$p(Au, Bx_{2n+1}) \leq \max\{\omega_1[p(Su, Tx_{2n+1})], \omega_2[p(Au, Su)],$$

$$\omega_3[p(Bx_{2n+1}, Tx_{2n+1})], \omega_4[p(Au, Tx_{2n+1})],$$

$$\omega_5[p(Su, Bx_{2n+1})]\}$$

$$= \max\{\omega_1[p(z, Tx_{2n+1})], \omega_2[p(Au, z)], \omega_3[p(Bx_{2n+1}, Tx_{2n+1})],$$

$$\omega_4[p(Au, Tx_{2n+1})], \omega_5[p(z, Bx_{2n+1})]\}.$$

Taking $n \to +\infty$ and applying (2.19) and (2.20), we get

$$p(Au, z) \leq \max\{\omega_1[p(z, z)], \omega_2[p(Au, z)], \omega_3[p(z, z)], \omega_4[p(Au, z)], \omega_5[p(z, z)]\}$$

$$\leq \omega_i[p(Au, z)] \text{ for some } i \in \{1, 2, \ldots, 5\}$$

$$< p(Au, z) \text{ for } p(Au, z) > 0$$

$$\Rightarrow p(Au, z) = 0$$

$$\Rightarrow Au = z, \text{ from (1.1).}$$
Using a similar procedure, when we expand \(p(Ax_{2n}, Bu) \), we get \(Bu = z \), making \(u \) a coincidence point of \(A, B \) and \(S \). By the coincidental commutativity of \(S \) and \(A \), we have \(SAu = ASu \Rightarrow Sz = Az \).

In the same vein, \(z \in TC \) means there is \(v \in C \), such that \(Tv = z \). We show that \(Bv = z \).

\[
p(z, Bv) = p(Au, Bv) \\
\leq \max\{\omega_1[p(Su, Tv)], \omega_2[p(Su, Au)], \omega_3[p(Tv, Bv)], \\
\omega_4[p(Au, Tv)], \omega_5[p(Su, Bv)]\} \\
= \max\{\omega_1[p(z, z)], \omega_2[p(z, z)], \omega_3[p(z, Bv)], \\
\omega_4[p(z, z)], \omega_5[p(z, Bv)]\} \\
\leq \omega_j[p(z, Bv)] \text{ for some } j \in \{1, 2, \ldots, 5\} \\
< p(z, Bv) \text{ for } p(z, Bv) > 0 \\
\Rightarrow p(z, Bv) = 0 \\
\Rightarrow Bv = z, \text{ from (1.1).}
\]

Thus \(v \) is a coincidence point of \(B \) and \(T \). By the coincidental commutativity property, we have

\begin{equation}
BTv = TBv \Rightarrow Bz = Tz.
\end{equation}

Now consider the following:

\[
p(Az, Bz) \leq \max\{\omega_1[p(Sz, Tz)], \omega_2[p(Sz, Az)], \omega_3[p(Tz, Bz)], \\
\omega_4[p(Az, Tz)], \omega_5[p(Sz, Bz)]\} \\
= \max\{\omega_1[p(Az, Bz)], \omega_2[p(Az, Az)], \omega_3[p(Bz, Bz)], \\
\omega_4[p(Az, Bz)], \omega_5[p(Az, Bz)]\} \\
\leq \omega_i[p(Az, Bz)] \text{ for } i \in \{1, 2, \ldots, 5\} \\
< p(Az, Bz) \text{ for } p(Az, Bz) > 0 \\
\Rightarrow p(Az, Bz) = 0 \\
\Rightarrow Az = Bz.
\]

Hence we have

\begin{equation}
(2.22) \quad Az = Bz = Sz = Tz.
\end{equation}
Now we consider the following:

\[p(z, Bz) = p(Au, Bz), \text{ from (2.21)} \]
\[\leq \max\{\omega_1[p(Su, Tz)], \omega_2[p(Au, Su)], \omega_3[p(Bz, Tz)], \omega_4[p(Au, Tz)], \omega_5[p(Su, Bz)]\} \]
\[= \max\{\omega_1[p(z, Bz)], \omega_2[p(z, z)], \omega_3[p(Bz, Bz)], \omega_4[p(z, Bz)], \omega_5[p(z, Bz)]\}. \]

This implies

\[p(z, Bz) \leq \omega_j[p(z, Bz)] \text{ for some } j \in \{1, 2, \ldots, 5\} \]
\[< p(z, Bz) \text{ for } p(z, Bz) > 0 \]
\[\Rightarrow p(z, Bz) = 0 \]
\[\Rightarrow Bz = z \text{ by (1.1)}. \]

From (2.22) we conclude that
\[Az = Bz = Sz = Tz = z, \]
meaning that \(z \) is a common fixed point of \(A, B, S \) and \(T \).

We now show that \(z \) is unique. Suppose \(z' \) is also a common fixed point of \(A, B, S \) and \(T \). We get

\[p(z, z') = p(Az, Bz') \]
\[\leq \max\{\omega_1[p(Sz, Tz')], \omega_2[p(Az, Sz)], \omega_3[p(Bz', Tz')], \omega_4[p(Az, Tz')], \omega_5[p(Sz, Bz')]\} \]
\[= \max\{\omega_1[p(z, z')], \omega_2[p(z, z)], \omega_3[p(z', z')], \omega_4[p(z, z')], \omega_5[p(z, z')]\}. \]

This implies

\[p(z, z') \leq \omega_k[p(z, z')] \text{ for } k \in \{1, 2, \ldots, 5\} \]
\[< p(z, z') \text{ for } p(z, z') > 0 \]
\[\Rightarrow p(z, z') = 0 \]
\[\Rightarrow z = z'. \]

This proves that the common fixed point of \(A, B, S \) and \(T \) is unique. \(\square \)

Remark 2.2. Theorem 2.1 leads to corollaries if we set the following:
(i) $A = B$;
(ii) $A = B, S = T$, we get Theorem 1.9;
(iii) $A = B, S = T = I$, we get an extension of a theorem proved by Ćirić [2] into partial metric spaces;
(iv) $A = I$;
(v) $S = T$;
(vi) $x = y$.

The proof given works even when we define C as closed in (X,p^s). This lead to the following theorem.

Theorem 2.3. Let (X, p) be a complete convex partial metric space with convex structure W which is continuous in the third variable. Let C be a closed subset of X, the closure being taken with respect to (X,p^s). Let ∂C, the boundary of C in (X,p^s), be non-empty. Let $A, B, S, T : C \to X$. Let us assume that A, B, S and T satisfy the following conditions:

(i) For every $x, y \in C, p(Ax, By) \leq M_\omega(x, y)$ where $M_\omega(x, y) = \max\{\omega_1[p(Sx, Ty)], \omega_2[p(Ax, Sx)], \omega_3[p(By, Ty)], \omega_4[p(Ax, Ty)], \omega_5[p(Sx, By)]\}, \omega_i : \mathbb{R}^+ \to \mathbb{R}^+$, $i = 1, 2, 3, 4, 5$, is a non-decreasing semicontinuous function from the right, such that $\omega_i(r) < r/2$ for $r > 0$, and $\lim_{r \to +\infty}[r - 2\omega_i(r)] = +\infty$.

(ii) $\partial C \subseteq SC, \partial C \subseteq TC$,
(iii) $Sx \in \partial C \Rightarrow Ax \in C, Tx \in \partial C \Rightarrow Bx \in C$,
(iv) $AC \cap C \subset TC, BC \cap C \subset SC$ and
(v) SC, TC are closed in C.

Then there exists a coincidence point $z \in C$ for A, B, S and T. Moreover, if each of the pairs $\{S, A\}$ and $\{T, B\}$ is coincidentally commuting, then z remains a unique common fixed point of A, B, S and T.

Here we give an example on the use Theorem 2.3, as it is better suited for the partial metric that we will use.

Example 2.4. Consider the partial metric space (\mathbb{R}_+, p) where $p(x, y) = \max\{x, y\}$ for all $x, y \in \mathbb{R}_+$. Let $C = [0, 2]$. We note that C is closed in the derived metric $p^s(x, y) = |x - y|$ and $\partial C = \{0, 2\}$.

We define the mappings $A, B, S, T : C \to \mathbb{R}_+$ as follows:

\[
Ax = \begin{cases}
3^x - 1, & x \in [0, 1] \\
1, & x \in (1, 2]
\end{cases}, \quad Bx = \begin{cases}
4^x - 1, & x \in [0, 1] \\
2, & x \in (1, 2]
\end{cases},
\]

\[
Sx = \begin{cases}
27^x - 1, & x \in [0, 1] \\
6, & x \in (1, 2]
\end{cases}, \quad Tx = \begin{cases}
64^x - 1, & x \in [0, 1] \\
8, & x \in (1, 2]
\end{cases}.
\]
We have $AC = [0, 2]$ and $BC = [0, 3]$. We also have $TC = [0, 63]$ and $SC = [0, 26]$, both of which are closed in (X, p_s).

$Sx \in \partial C$ implies $z \in \{0, 1/3\} \subset C$. Similarly $Tx \in \partial C$ implies $x \in \{0, \ln 3/\ln 64\} \subset C$. We also have $\partial K = \{1, 3\} \subseteq SC, TC$.

We note that $\{S, A\}$ and $\{T, B\}$ are both coincidentally commuting at $x = 0$: that is, $SA(0) = AS(0)$ and $TB(0) = BT(0)$. We also note that all four mappings are discontinuous at 1.

Let us define the functions $g, h : C \to \mathbb{R}_+$ as

$$g(x) = \frac{27^x - 1}{4^x - 1}, \quad h(x) = \frac{64^x - 1}{4^x - 1}.$$

Both g and h are increasing functions. Using l’Hôpital rule, we can show that, as $x \to 0$, we have $h(x) \to 3$ and

$$g(x) \to \frac{\log 27}{\log 4} = \frac{1}{0.42062}. \quad (2.23)$$

Hence, for $x \in [0, 1]$, we have

$$4^x - 1 \leq \frac{1}{3} (64^x - 1) \leq 0.43(64^x - 1). \quad (2.24)$$

We also have, from (2.23)

$$4^x - 1 \leq 0.42062(27^x - 1) \quad (2.25) \Rightarrow 4^x - 1 \leq 0.43(27^x - 1).$$

When $x, y \in [0, 1]$, with $x \leq y$, we have

$$p(Ax, By) = p(3^x - 1, 4^y - 1) = \max\{3^x - 1, 4^y - 1\} = 4^y - 1, \text{ because } x \leq y \leq 0.43(64^y - 1), \text{ by } (2.24) = 0.43Ty \leq 0.43 \max\{Sx, Ty\} = 0.43p(Sx, Ty).$$
When $x, y \in [0, 1]$, with $x > y$, we have

$$p(Ax, By) = p(3^x - 1, 4^y - 1)$$

$$= \max\{4^x - 1, 4^y - 1\}, \text{ because } 3^x - 1 \leq 4^x - 1$$

$$= 4^x - 1, \text{ because } x > y$$

$$\leq 0.43(27^x - 1), \text{ by (2.25)}$$

$$= 0.43Sx$$

$$\leq 0.43 \max\{Sx, Ty\}$$

$$= 0.43p(Sx, Ty).$$

For $x, y \in (1, 2]$ we have

$$p(Ax, By) = p(1, 2)$$

$$= \max\{1, 2\}$$

$$= 2$$

$$< 0.43 \times 6$$

$$\leq 0.43 \max\{6, Ty\}$$

$$= 0.43 \max\{Sx, Ty\}, \text{ because } Sx = 6$$

$$= 0.43p(Sx, Ty).$$

Consider when $x \in [0, 1], y \in (1, 2]$ we get

$$p(Ax, By) = p(3^x - 1, 2)$$

$$= \max\{3^x - 1, 2\}$$

$$= 2, \text{ because } 3^x - 1 \leq 2 \text{ for } x \in [0, 1]$$

$$< 0.43 \times 8$$

$$= 0.43Ty \text{ because } Ty = 8$$

$$\leq 0.43 \max\{Sx, Ty\}$$

$$= 0.43p(Sx, Ty).$$

Consider when $x \in (1, 2], y \in (0, 1)$.

$$p(Ax, By) = p(1, 4^y - 1)$$

$$= \max\{1, 4^y - 1\}$$

$$= \begin{cases}
1 & \text{if } y \in (0.5, 1] \\
6 & \text{otherwise}
\end{cases}$$
For $y \in [0, 0.5]$, we have

\[
p(Ax, By) = p(1, 4^y - 1) \\
= 1 \\
< 0.43 \times 6 \\
= 0.43Sx \text{ because } Sx = 6 \\
\leq 0.43 \max\{Sx, Ty\} \\
= 0.43p(Sx, Ty).
\]

For $y \in (0.5, 1]$ we have

\[
p(Ax, By) = p(1, 4^y - 1) \\
= 4^y - 1 \\
\leq 0.43(64^y - 1), \text{ by (2.24)} \\
= 0.43Ty \\
\leq 0.43 \max\{Sx, Ty\} \\
= 0.43p(Sx, Ty).
\]

Thus in all cases, for every $x, y \in C$ we have

\[
p(Ax, By) \leq 0.43p(Sx, Ty) \leq M_\omega(x, y),
\]

where

\[
M_\omega(x, y) = \max \{\omega_1[p(Sx, Ty)], \omega_2[p(Ax, Sx)], \omega_3[p(Ay, Ty)], \omega_4[p(Ax, Ty)], \omega_5[p(Sx, Ay)]\},
\]

with $\omega_1[r] = 0.43r$. We note that $\omega_1[r] = 0.43r < \frac{1}{2}r$.

As $r - 2\omega_1[r] = r - 2 \times 0.43r = 0.14r$, we also have

\[
\lim_{r \to +\infty} r - 2\omega_1[r] = \lim_{r \to +\infty} 0.14r = +\infty.
\]

Thus all the conditions of Theorem 2.3 are satisfied and 0 is the unique common fixed point of A, B, S and T.

References

Authors' addresses:
Terentius Rugumisa, Faculty of Science, Technology and Environmental Studies, The Open University of Tanzania, Tanzania. e-mail: rterentius@gmail.com
Santosh Kumar, Department of Mathematics, College of Natural and Applied Sciences, University of Dar es Salaam, Tanzania. e-mail: draengar2002@gmail.com
Mohammad Imdad, Department of Mathematics, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India. e-mail: mhimdad@gmail.com