The ~4-ka Rungwe Pumice (South-Western Tanzania): a wind-still Plinian eruption

Karen Fontijn
Gerald G. J. Ernst
Costanza Bonadonna
Marlina A. Elburg
Evelyne Mbede
Patric Jacobs

Abstract

The ~4-ka trachytic Rungwe Pumice (RP) deposit from Rungwe Volcano in South-Western Tanzania is the first Plinian-style deposit from an African volcano to be closely documented focusing on its physical characterization. The RP is a mostly massive fall deposit with an inversely graded base. Empirical models suggest a maximum eruption column height H_r of 30.5–35 km with an associated peak mass discharge rate of $2.8–4.8 \times 10^8$ kg/s. Analytical calculations result in H_r values of 33 ± 4 km (inversion of TEPHRA2 model on grain size data) corresponding to mass discharge ranging from 2.3 to 6.0×10^8 kg/s. Lake-core data allow extrapolation of the deposit thinning trend far beyond onland exposures. Empirical fitting of thickness data yields volume estimates between 3.2 and 5.8 km3 (corresponding to an erupted mass of $1.1–2.0 \times 10^{13}$ kg), whereas analytical derivation yields an erupted mass of 1.1×10^{12} kg (inversion of TEPHRA2 model). Modelling and dispersal maps are consistent with nearly no-wind conditions during the eruption. The plume corner is estimated to have been ca. $11–12$ km from the vent. After an opening phase with gradually increasing intensity, a high discharge rate was maintained throughout the eruption, without fountain collapse as is evidenced by a lack of pyroclastic density current deposits.

Keywords

RungweTanzaniaPlinian eruptionsPhysical characterizationEruptive parametersWind-free conditionsTrachyte