Vangueria infausta root bark: in vivo and in vitro antiplasmodial activity

A.O. ABOSI1, E. MBUMWA1, R. R. T. MAJINDA1, B. H. RASEROKA1, A. YENESEW1, J. O. MIDIW1, H. AKALA1, P. LIYALA1 and N.C. WATERS1
Departments of 1Biological Sciences and 2Chemistry, University of Botswana, Gaborone, Botswana; 1Department of Chemistry, University of Nairobi, Kenya; and 1United States Army Medical Research Unit – Kenya, AE 09831-4109, USA

Accepted: 8 June 2006

Introduction

Malaria affects a large number of people in tropical and subtropical areas of the world. The majority of the deaths caused by the disease occur in Africa, a continent that also carries the burden of human immunodeficiency virus (HIV) infection and acquired immune deficiency syndrome (AIDS). In addition, control of the disease is often disturbed by civil unrest, which is commonplace in this part of the world.

The resurgence of malaria, vector resistance to insecticides and resistance of Plasmodium species to the most valuable chemotherapeutic agents such as chloroquine24(Fig. 1) has magnified the problem, which means that malaria remains one of the world’s most common tropical diseases.

The success of artemisinin (Fig. 2), a sesquiterpene lactone with endoperoxide moiety, isolated from a traditional Chinese medicinal plant25 opened a new horizon in antimalarial drug research and increased interest in plants with medicinal properties. Thus, there is hope that secondary metabolites with specific actions against malaria might be isolated.

In many tropical countries, a wide variety of reputable medicinal plants26-31 are sold by local medicinal herb vendors for treatment of a variety of diseases. Research work carried out on marketed medicinal plants in Botswana shows that most of these plants contain secondary metabolites with medicinal properties, some of which have antimalarial activity.25

Vangueria infausta burch subsp. infausta (Rubiaceae) produces fruits eaten by humans and animals. The leaf, fruit, stem bark and root bark are used as a remedy for many ailments and the root is used to treat malaria.25-31 Nundkumar and Ojemole25 demonstrated antimalarial activity of the leaf extract of this plant.

Previous research shows that the leaf, fruit, stem bark and root bark possess antimalarial activity.17 The present study reports the antimalarial activity of the crude root bark extract and the concentrations of fractions obtained that produce 50% inhibition (IC50) of the Plasmodium species.

ABSTRACT

Vangueria infausta burch subsp. infausta (Rubiaceae) produces fruits eaten by humans and animals. The leaf, fruit, stem bark and root bark are used as a remedy for many ailments and the roots are used to treat malaria. In this study, concentrations of fractions of the V. infausta root bark extract that produce 50% inhibition (IC50) are determined using the ability of the extract to inhibit the uptake of [3H]-hypoxanthine by P. falciparum cultured in vitro. The root bark extract showed antimalarial activity against Plasmodium berghei in mice. It gave a parasite suppression of 73.5% in early infection and a repository effect of 88.7%. One fraction obtained from a chloroform extract gave an IC50 value of 3.8±1.5 µg/mL and 4.5±2.3 µg/mL against D, and W, strains of P. falciparum, respectively, and another from the butanol extract gave an IC50 value of 3.9±0.3 µg/mL against the D6 strain. Chloroquine had an IC50 value of 0.016 µg/mL and 0.029 µg/mL against D, and W, strains, respectively. The plant showed the presence of flavonoids, coumarins, tannins, terpenoids, anthraquinones and saponins.

KEY WORDS: Biological factors.
Plant extracts. Plants. medicinal.
Plasmodium berghei.
Plasmodium falciparum.
Vangueria infausta.

Fig. 1. Chemical structure of chloroquine, to which Plasmodium species are becoming increasingly resistant.

Fig. 2. Chemical structure of artemisinin, a sesquiterpene lactone with endoperoxide moiety, isolated from a traditional Chinese medicinal plant.

Correspondence to: Dr A. O. Aboi
Department of Biological Sciences, University of Botswana, P. O. Box 70053, LLB Post Office, Gaborone, Botswana
Email: tonia603@hotmail.com

BRITISH JOURNAL OF BIOMEDICAL SCIENCE 2006 63 (3)
Materials and methods

Plant material
The root bark of *V. infausta* was collected from Veld Product Farms, Gabane, and from Mapoka in north-east Botswana in March and June 2003, respectively.

General methodology
Chromatography was carried out using silica gel 60 with a particle size of 0.040–0.063 mm for column chromatography (Merck), silica gel 60 PF254, 254 for preparative thin-layer chromatography (TLC, Merck) and Sephadex LH-20 for gel filtration. Analytical TLC was performed on TLC silica gel 60-F254 precoated alumina sheets (Merck), visualised using ultraviolet (UV) light (254 and 366 nm) and sprayed with vanillin sulphuric acid spray.

Extraction
The dried and powdered root bark (29.3 g) extracted in methanol by the Soxhlet extraction method\(^a\) was used in the *in vitro* evaluation. The dried crude extract was redissolved in ethanol and then distilled to distilled water to concentrations of 500, 250 and 125 mg/kg prior to use. Each dose was given as a 0.5 mL volume per mouse.

For the *in vitro* antiplasmodial activity evaluation, the dried powdered root bark (600 g) was extracted (x5) in a mixture of solvents (hexane/chloroform/methanol/water, 1:1:4:1) to yield a crude extract that was concentrated under reduced pressure. The dark brown crude extract (59.9 g) obtained was subjected to liquid–liquid partitioning to yield a hexane extract (0.7 g), a chloroform extract (5.3 g), a butanol extract (13.7 g) and residual water extract (16.0 g).

The chloroform extract was subjected to column chromatography (CC) using silica gel (60) g and eluted with 100% n-hexane followed by n-hexane/chloroform (1:1), chloroform/ethyl acetate and ethyl acetate/methanol in increasing polarity. A total of 39 fractions collected and examined by TLC (solvent system: n-hexane/CHCl3 [9:1, 6:4, 3:7] and CHCl3/ EtOAc [9:1]) were then pooled according to similarity of their TLC profiles.

The butanol extract was subjected to vacuum liquid chromatography (VLC) and eluted with chloroform and methanol in increasing polarity to yield six major fractions. The eluting solvents were eliminated by vacuum evaporation. The fractionation scheme is shown in Figure 3.

Phytochemical screening methods
Phytochemical screening was performed according to the method of Chhabra et al.\(^a\) This method uses chemical reagents to demonstrate classes of phytochemical compounds present in plant materials.

In vivo antimalarial activity
In vivo antimalarial activity was evaluated in both early and established infection, as described by Abosi and Raseroka.\(^a\)

To assess any possible reproductibility effect of the extract, a modification of the method by Peters\(^a\) was used. In this method, 25 NMRI albino mice weighing 18–22 g and kept in groups of five in plastic cages at 20° C (room temperature) were used. They were supplied with dog feed and drinking water, allowed free movement and kept in similar environmental condition throughout the experiment.

Each group of mice was given an oral dose of extract on three consecutive days. A dose of 1.2 mg/kg per day of pyrimethamine, a prophylactic drug, was used as the standard drug. This was given to one group while another group received sterile distilled water.

On the fourth day of treatment, the mice were injected with a 1 x 10⁵ inoculum of *P. berghei*-parasitized erythrocytes from a donor mouse previously infected with *P. berghei* parasites. Seventy-two hours later, tail-blood smears were prepared, stained by Giemsa and the percentage parasitaemia was determined and compared to controls. The mean percentage suppression was calculated as in early infection.\(^2\)

In *in vitro* antimalarial activity
Two strains of *P. falciparum*, obtained from the United States Army Medical Research Unit–Kenya (MRU) and maintained in continuous culture at 37°C in a mixture of gases (3% O₂, 6% CO₂ and 91% N₂), were used to assess the antimalarial activity of the extracts using a method adapted from that of Desjardin et al.\(^a\)

The chloroquine-sensitive Sierra Leone 1 (D₅) and chloroquine-resistant Indo-China 1 (W₇) strains, commonly used in drug sensitivity assays, were grown in a 6% suspension of human AB Positive erythrocytes in culture medium, using a modification proposed by Trager and Jensen\(^a\) and Haynes.\(^a\)

Once a parasitaemia of 3%, with at least 70% ring forms, was attained the cultures were diluted to a haematocrit of 1% and parasitaemia of 0.9% with non-infected blood. The dried extracts were initially dissolved in dimethyl sulfoxide (DMSO) to a stock concentration of 1 mg/mL and serially diluted with culture medium to provide a range of concentrations used to determine IC₅₀ values accurately.

For more accurate determination of IC₅₀ values of the extracts, 12 two-fold dilutions were prepared starting at

Fig. 3. Fractionation of *V. infausta* for in vitro antimalarial testing.
50 μg/mL. Aliquots (25 μL) of the diluted extract were dispensed into 96-well microtitre plates, and 200 μL diluted parasites were transferred to each well.

Two series of controls were included: one with parasitised blood without extract and another with uninfected blood. Standard drugs were also included.

The plates were incubated at 37°C in a CO₂ incubator in an atmosphere of 6% CO₂ for 24 h. The plates were then removed from the incubator and 25 μL isotope in culture medium was added to each well. The isotope was previously prepared to contain 20 μCi [G³H]-hypoxanthine per mL culture medium.

The plates were returned to the 37°C incubator for an additional 18 hours. They were then moved to −20°C freezer for a further 12 hours. This terminated the assay by stopping parasite growth and ensured complete lysis of the erythrocytes.

Cells were harvested on a glass-fibre filter (Packard Filtermate Harvester Unifilter-96) using an automated cell harvester (Filtermate Cell Harvester, Packard Instruments), washed thoroughly with distilled water to eliminate unincorporated isotope and then allowed to dry.

Using a liquid scintillation counter (Packard Topcount M&T microplate scintillation and luminescence counter), raw data on parasite counts were acquired. These were received in Microsoft Excel spreadsheet format, saved on a diskette and were imported to the data analysis software (Oracle), which gave the result as IC₅₀ values for the tested extracts.

Results

In vivo antimalarial activity

In a well-established infection (Fig. 4), the mice achieved a range of parasitaemia levels between 8.0% and 14.6% in 72 h following *P. berghei* passage. The different doses of the extract reduced parasitaemia but could not completely eliminate it. There was a gradual daily increase in parasitaemia, with only a slight reduction in parasite count after three days of treatment.

The control group showed daily rises in parasite count, while in the chloroquine-treated group the parasites were almost completely eliminated. Mean survival times of 14.2±0.7 days, 8.8±0.8 days and 7.8±0.8 days were recorded for 500 mg/kg, 250 mg/kg and 125 mg/kg, respectively.

The control group showed a mean survival time of 7.6±0.6 days, while the chloroquine-treated group survived for more than 30 days. In early infection and in the repository state (Table 1), parasite suppression was observed and the extracts showed residual effect at higher concentrations, suggesting a dose-related suppressive effect.

In vitro antimalarial activity

The results of the *in vitro* antimalarial evaluation of fractions of *V. infausta* against chloroquine-sensitive *D. strn* and chloroquine-resistant *W.* strains of

<table>
<thead>
<tr>
<th></th>
<th>Dose (mg/kg)</th>
<th>Parasitaemia¹</th>
<th>Suppression¹</th>
<th>Parasitaemia²</th>
<th>Suppression²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root</td>
<td>500</td>
<td>10.6±3.9</td>
<td>73.5</td>
<td>2.6±1.8</td>
<td>88.7</td>
</tr>
<tr>
<td>Root</td>
<td>250</td>
<td>13.0±1.5</td>
<td>67.5</td>
<td>3.2±1.8</td>
<td>86</td>
</tr>
<tr>
<td>Root</td>
<td>125</td>
<td>22.2±2.7</td>
<td>44.5</td>
<td>20.6±2.1</td>
<td>10.4</td>
</tr>
<tr>
<td>Chloroquine</td>
<td>5</td>
<td>1.8±0.4</td>
<td>80.4</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Control</td>
<td>0</td>
<td>40.0±0.9</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Pyrimethamine</td>
<td>1.2</td>
<td>ND</td>
<td>ND</td>
<td>2.2±0.2</td>
<td>90.4</td>
</tr>
<tr>
<td>Control</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>23.0±2.3</td>
<td>0</td>
</tr>
</tbody>
</table>

¹Mean±SE percentage parasitaemia in early infection.
²Mean parasite suppression in early infection.
³Mean±SE percentage parasitaemia in repository effect of extract.
⁴Mean parasite suppression during repository effect.
ND: Not done.

Fig. 4. The effects of *V. infausta* on the level of parasitaemia in mice infected by *P. berghei*. Root bark extract given at 500mg/kg per day, ■—■ 250 mg/kg per day, ◆—◆ 125 mg/kg per day, O—O chloroquine, ▲—▲ control. Each point represents the mean±SE of results from five mice.

Table 1. The *in vivo* antimalarial activity of *V. infausta* root extracts on *P. berghei* in mice.
R. falciparum, based on the inhibition of [G'HI]-hypoxanthine uptake.

Table 2 displays the antiplasmodial activity of the five main crude extracts, all of which showed antiplasmodial activity. Hexane extract showed the strongest activity against D6 strain.

Table 3 shows that stronger activity was apparent, as the extracts were semipurified. Two fractions gave IC₅₀ values <5 µg/mL, five had IC₅₀ values <10 µg/mL, while the majority had values <50 µg/mL.

Phytochemical screening

Preliminary phytochemical screening tests showed the presence of flavonoids, coumarins, tannins, terpenoids/steroids and anthraquinones in the root bark extracts.

Discussion

The in vitro activity of V. infausta root bark extracts against malaria was tested to assess its ability to protect mice from the lethal effects of P. berghei infection. The effects produced show that the root extract reduced the level of parasitaemia in early infection, had a residual effect and also influenced the course of well-established infection in mice. The extract-treated mice survived longer than those in the control group.

The results of this in vitro evaluation probably explains why this plant is used by the indigenous people⁴ and suggests that its use probably reduces levels of parasitaemia such that infection might be symptomatic. However, effectiveness might also be influenced by differences in gastrointestinal uptake of the active substances.

Solvent fractionation of the extract aimed to obtain major fractions for antiplasmodial testing by sequentially extracting in hexane, chloroform, butanol and also using the residual water fraction. Assuming that antimalarial activity would result from more polar substances, chloroform and butanol extracts were further fractionated.

Table 2. In vitro antimalarial activity of crude extracts of V. infausta against two strains of R. falciparum.

<table>
<thead>
<tr>
<th>Extract</th>
<th>IC₅₀ (µg/mL)</th>
<th>D₅₀</th>
<th>W₅₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude</td>
<td>24.1±1.7</td>
<td>25.0±0.7</td>
<td></td>
</tr>
<tr>
<td>n-hexane</td>
<td>11.8±2.9</td>
<td>24.5±3.1</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>14.2±1.6</td>
<td>21.3±4.0</td>
<td></td>
</tr>
<tr>
<td>n-butanol</td>
<td>25.6±1.8</td>
<td>30.3±17.5</td>
<td></td>
</tr>
<tr>
<td>Residual H₂O</td>
<td>16.8±7.8</td>
<td>22.4±3.3</td>
<td></td>
</tr>
<tr>
<td>Chloroquine</td>
<td>0.016</td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td>Meloquine</td>
<td>0.0057</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>Quinine</td>
<td>NT</td>
<td>0.15</td>
<td></td>
</tr>
</tbody>
</table>

Values are the mean±SD of four separate experiments performed on different days.

Cut-off point for activity of crude extract: IC₅₀ ≤49.4 µg/mL.

NT: Not tested.

The results presented here indicated that in vitro antimalarial testing can be carried out on crude extracts using sensitive and resistant P. falciparum strains. Strong antimalarial activity with IC₅₀ values within the acceptable range of values for crude extracts⁵ were obtained against sensitive and resistant P. falciparum strains.

In similar experiments, Veneen et al.⁶ demonstrated weak antimalarial activity (IC₅₀ 49.0 µg/mL) of dichloromethane and methanol extracts of V. infausta root and inactivity of petroleum ether extract. Nundkumar and Ojewole⁷ showed in vitro antimalarial activity of the leaf extract. It might be argued that cytotoxic natural products can give false-positive results in any in vitro test system.

The in vitro test results demonstrate the value of the extracts against Plasmodium species parasites. However, while V. infausta produces edible fruits eaten by humans and...
animals, extracts from other Vangueria species have demonstrated neither antibacterial nor antischistosomal activity.\(^\text{10}\)

Phytochemical findings agree with those reported elsewhere\(^\text{11,12}\) and suggest that its wide ethnomedicinal use could be attributed to the classes of compounds it possesses. While the present study provides insight into the fractions from which potent antimalarial substances can be isolated, further work is planned to isolate and characterise these active compounds.

This research was supported by an Institute of Biomedical Science Overseas Research Grant.

References

